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Definition

Definition of Mutual Information

Mutual Information (MI) quantifies the information shared between two categorical
random variables X and Y :

MI(X ,Y ) =
∑
x∈X

∑
y∈Y

pX ,Y (x , y) log
pX ,Y (x , y)

pX (x)pY (y)

= H(Y )− H(Y |X )

where H is the entropy function which quantifies uncertainty. MI intuitively quantifies
the uncertainty of Y explained by X 1.

Characteristics

I MI(X ,Y ) = 0 if X and Y are independent;

I MI is maximized when one variable is a deterministic function of the other.
E.g. Y = f (X )⇒ MI(X ,Y ) = H(Y ).

1In this talk we use natural logarithms.
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Definition

Extension to continuous random variables

MI can also quantify the dependency between two continuous random variables:

MI(X ,Y ) =

∫ +∞

−∞

∫ +∞

−∞
fX ,Y (x , y) log

fX ,Y (x , y)

fX (x)fY (y)

Characteristics

I MI(X ,Y ) = 0 if X and Y are independent;

Importance of MI
MI is a compelling tool to assess the strength of the dependency between features
because it is based on a well-established theory and quantifies non-linear interactions
which might be missed if e.g. the Pearson’s correlation coefficient r(X ,Y ) is used.
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Definition

Estimation of MI

Categorical variables
The estimation for the categorical case is straightforward: the empirical probability
distribution for pX ,Y (x , y),pX (x), and pY (y) is computed on data and plugged in the
MI formula. In this case, MI is also a linear function of the G -statistics used in
likelihood-ratio tests : G = 2N ·MI with N number of records.

Continuous variables
A number of different estimators have been proposed for MI in the continuous case.
The standard approach consists in discretizing the space of possible values for X and
Y . There are also many possible approaches for discretization [Garcia et al., 2013],
however the straightforward way is to discretize X and Y according to equal-width or
equal-frequency binning.

Group Type Citation

Discretization
based

Discretization equal width [Steuer et al., 2002]
Discretization equal frequency [Steuer et al., 2002]
Adaptive Discretization [Cellucci et al., 2005]

Others
Nearest Neighbour [Kraskov et al., 2004]
Kernel Density Estimation [Moon et al., 1995]

Table: List of possible estimators.
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Definition

Non-exhaustive list of other dependency measures

Information theory gave birth to some new dependency measures (also based on
discretization) in the last few years:

Acronym Name Citation

MIC Maximal Information Coefficient [Reshef et al., 2011]
GMIC Generalized Mean Information Coefficient [Luedtke and Tran, 2013]
MID Mutual Information Dimension [Sugiyama and Borgwardt, 2013]

Of course the number of possible non-linear dependency measures in use is large:

Acronym Name Citation

dCorr Distance Correlation [Székely et al., 2009]
RDC Randomized Dependency Coefficient [Lopez-Paz et al., 2013]
HSIC Hilbert-Schmidt Independence Criterion [Gretton et al., 2005]

However, information theory provides a well-established framework and it has been
successfully employed for a variety of applications...
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Applications

Applications

Supervised data mining

I Feature selection [Nguyen et al., 2014b, Nguyen et al., 2014a];

I Decision tree induction [Criminisi et al., 2012].

Unsupervised data mining

I External clustering validation [Romano et al., 2014];

I Generation of alternative or multi-view clusterings
[Dang and Bailey, 2015, Müller et al., 2013];

I The exploration of the clustering space using results from the Meta-Clustering
algorithm [Caruana et al., 2006].

Exploratory data mining

I Analysis of neural time-series data [Cohen, 2014];

I Reverse engineering of biological networks [Villaverde et al., 2013];

James Bailey The University of Melbourne
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Applications

Application examples

Remark:
In the rest of the talk we focus on MI for categorical variables or the discretized
version of continuous variables.

Examples:
To gain intuition about MI computation we describe in detail 2 application examples:

1. External clustering validation;

2. Decision tree induction.

James Bailey The University of Melbourne
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Applications

Application example (1): external clustering validation

Task: Compare a clustering solution B to a reference clustering A.

Example
N = 15 data points

reference clustering A with 2 clusters, stars and circles

James Bailey The University of Melbourne
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Applications

Application example (1): external clustering validation

Task: Compare a clustering solution B to a reference clustering A.

Example
N = 15 data points

reference clustering A with 2 clusters, stars and circles

clustering solution B with 2 clusters,
red and blue

James Bailey The University of Melbourne
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Applications

MI computed on a contingency table

MI is estimated on data via a contingency table that assess the amount of overlap
between A and B

B
red blue
6 9

A
8 4 4

7 2 5

James Bailey The University of Melbourne
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Applications

MI computation

MI between the two clusterings A and
B is computed on a contingency table
M using the empirical probability

distributions
nij
N

, ai
N

, and
bj
N

:

MI(A,B) =
r∑

i=1

c∑
j=1

nij

N
log

nijN

aibj

B
b1 · · · bj · · · bc

a1 n11 · · · · · · · n1c

...
...

...
...

A ai · nij ·
...

...
...

...
ar nr1 · · · · · · · nrc

Contingency table M

ai =
∑

j nij are the row marginals and

bj =
∑

i nij are the column marginals.
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Applications

Application example (2): decision tree induction

Task: Find the most informative feature F to the target class C.

MI(F,C) is still computed on a contingency table. In this scenario MI is also known as
the Information Gain: IG(F,C) = MI(F,C)

E.g. if the class C = cancer and a feature F = smoker.

+ -
10 10

Smoker 8 6 2
Non smoker 12 4 8

yes no
smoker
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Applications

Limitations

MI is a well-established tool to compare two random variables but it is has some
limitations that can be overcome by its statistical adjustments.

Limitation and solution

I Non-intuitive range of variation

⇒Solution: the Normalized Mutual Information (NMI) [Kvalseth, 1987]; Ensure
the range of the measure is in the range [0, 1]

I Non-zero baseline

⇒Solution: the Adjusted Mutual Information (AMI) [Vinh et al., 2009]; Value of
measure is expected to be zero when sampling at random features to be
correlated.

I Selection bias

⇒Solution: the Standardized Mutual Information (SMI) [Romano et al., 2014];
Avoid preferring features with many bins/categories.

James Bailey The University of Melbourne
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Motivation

Definition of the Normalized Mutual Information

Limitation of MI
MI has a non-intuitive range of variation. What does an MI of 5.6 mean ?

Solution
MI can be normalized by its maximum value in order to vary in the interval [0,1]:

NMI =
MI

max MI

Many possible upper bounds for MI(A,B):

min {H(A),H(B)} ≤
√

H(A) · H(B) ≤
1

2
(H(A)+H(B)) ≤ max {H(A),H(B)} ≤ H(A,B)

Depending on the chosen upper bound, it is possible to obtain information theoretic
distance measures with metric properties [Vinh et al., 2010]. A distance measure with
metric properties is indeed useful for designing efficient algorithms that exploit the
nice geometric properties of metric spaces [Meilă, 2012].

James Bailey The University of Melbourne
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Motivation

Normalization of Mutual Information

In [Vinh et al., 2010] we propose a review of possible normalization choices for MI.

Table: Normalization of Mutual Information.

Name Expression Range Related sources

NMIjoint
MI(A,B)
H(A,B)

[0,1] [Yao, 2003]

NMImax
MI(A,B)

max{H(A),H(B)} [0,1] [Kvalseth, 1987]

NMIsum
2MI(A,B)
H(A)+H(B)

[0,1] [Kvalseth, 1987]

NMIsqrt
MI(A,B)√
H(A)H(B)

[0,1] [Strehl and Ghosh, 2002]

NMImin
MI(A,B)

min{H(A),H(B)} [0,1]

Table: Distance measures based on MI.

Name Expression Range Metric Related sources
Djoint (VI )

H(A, B)− MI(A, B) [0,log N] X
[Yao, 2003]

(Variation of Information ) [Meilǎ, 2005]
Dmax max{H(A),H(B)} − MI(A, B) [0,log N] X

Dsum(≡ 1
2
Djoint ) 1

2
[H(A) + H(B)]− MI(A, B) [0,log N] X

Dsqrt
√

H(A)H(B)− MI(A, B) [0,log N] 7
Dmin min{H(A),H(B)} − MI(A, B) [0,log N] 7

James Bailey The University of Melbourne
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Limitations

Successful applications and limitations

NMI has been shown to be successful in:

I Clustering comparisons scenarios [Strehl and Ghosh, 2003, Wu et al., 2009];

I Decision tree induction [Quinlan, 1993];

I Feature selection [Estévez et al., 2009].

However NMI has some limitations
NMI does not have constant 0 baseline value for independent variables A and B.

James Bailey The University of Melbourne
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Limitations

Limitation on case study: external clustering validation
Task: Compare a clustering solution B to reference clustering A.

Experiment
N = 500 data points
A with 10 clusters

Number of clusters c
2 4 6 8 10 12 14 16 18 20 22

M
ea

su
re

0

0.2

0.4

MI

NMI

Figure: If the clustering solution B is generated independently from A at random with c clusters
the average value of MI and NMI increases at the increase of the number of clusters.

Needs of statistical correction for MI

James Bailey The University of Melbourne
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Limitations

Little affect of other approaches:
A correction for MI has already been proposed a while ago [Miller, 1955]:

MI (Miller correction) = MI−
(r − 1)(c − 1)

2N

with r ,c number of bins and N number of records.
However it seems not effective in the general case:

Number of clusters c
2 4 6 8 10 12 14 16 18 20 22

M
ea

su
re

0

0.2

0.4

MI

NMI

MI (Miller correction)

Figure: Clustering solutions B generated independently from A. Miller correction is not effective.

To address this issue we propose to statistically adjust MI for chance

James Bailey The University of Melbourne
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Motivation

The Adjusted Mutual Information

Limitation of NMI
MI and NMI have non-zero baseline.

Solution
Statistically adjust MI by the subtraction of its expected value under the null
hypothesis of independence. The Adjusted Mutual Information (AMI) is defined as
[Vinh et al., 2009]:

AMI =
MI− E [MI]

max MI− E [MI]

The resulting measure is statistically normalized: it is equal to 0 when MI is equal to
the expected value obtained by chance.

James Bailey The University of Melbourne
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Motivation

Adjustment for chance

We compute the expected value of MI under the null hypothesis of independent
clusterings A and B.

we make use of the permutation model to compute it analytically: the distribution of
MI is computed using all possible contingency tables M obtained by permutations.

James Bailey The University of Melbourne
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Motivation

Expected Value

E [MI] is obtained by summation over all possible contingency tables M obtained by
permutations.

E [MI] =
∑
M

MI(M)P(M) =
∑
M

∑
i,j

nij

N
log

nijN

aibj
P(M)

I No method to exhaustively generate M
I extremely time expensive ( permutations O(n!))

However, it is possible to swap the inner summation with the outer summation:

E [MI] =
∑
M

∑
i,j︸ ︷︷ ︸

to swap

nij

N
log

nijN

aibj
P(M) =

∑
i,j

∑
nij︸ ︷︷ ︸

swapped

nij

N
log

nijN

aibj
P(nij )

I nij has a known hypergeometric distribution,

I Computation time dramatically reduced!

James Bailey The University of Melbourne
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Motivation

According to the different upper bound to MI used we obtain different versions of the
Adjusted Mutual Information (AMI):

Table: Adjusted Mutual Information [Vinh et al., 2010].

Name Expression Range

AMImax
MI(A,B)−E [MI(A,B)]

max {H(A),H(B)}−E [MI(A,B)]
[0, 1]∗

AMIsum
MI(A,B)−E [MI(A,B)]

1
2

(H(A)+H(B))−E [MI(A,B)]
[0, 1]∗

AMIsqrt
MI(A,B)−E [MI(A,B)]√
H(A)·H(B)−E [MI(A,B)]

[0, 1]∗

AMImin
MI(A,B)−E [MI(A,B)]

min {H(A),H(B)}−E [MI(A,B)]
[0, 1]∗

∗These measures are normalized in a statistical sense.
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Motivation

Speed considerations

The computational complexity of NMI depends just on the number of clusters:

O(rc)

The computational complexity of AMI is linear in the number of records N:

O (max {rN, cN})

However

I Useful when the number of data points is small because

lim
N→+∞

E [MI] = 0

I Somebody has recently parallelized it [Schmidt et al., 2014].

James Bailey The University of Melbourne
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Motivation

Successful application

Task: Compare a clustering solution B to reference clustering A.

Experiment
N = 500 data points
A with 10 clusters

Number of clusters c
2 4 6 8 10 12 14 16 18 20 22

M
ea

su
re

0

0.1

0.2

0.3
MI

NMI

AMI

Figure: AMI obtains 0 baseline when clusterings B are generated at random.
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Limitations

Successful applications and limitations

AMI is becoming a popular tool to compare clusterings.

Figure: AMI is a polar tool for clustering comparisons.

However even AMI has some limitations:
AMI is affected by selection bias.

James Bailey The University of Melbourne
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Limitations

Limitation on case study: selection of clustering solution

Task: Select the most similar clustering solution B to a reference clustering A.

Experiment
N = 500 data points
A with 10 clusters

Each B is generated independently from A:

I One clustering solution B on c = 2 clusters

I One clustering solution B on c = 6 clusters

I One clustering solution B on c = 10 clusters

I One clustering solution B on c = 14 clusters

I One clustering solution B on c = 18 clusters

I One clustering solution B on c = 22 clusters

Select the B that yields the
maximum MI(A,B)

Give a win to the solution
that gets the highest value

REPEAT

James Bailey The University of Melbourne
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Limitations

Selection Bias

MI unfairly selects more often the solution with c = 22 clusters.
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Limitations

Also AMI is affected by selection bias

AMI =
MI− E [MI]√

H(A) · H(B)− E [MI]
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We have to take into account full distributional properties of MI: we proceed by
subtracting its expected value and dividing by its standard deviation:

we propose to statistically standardize MI

James Bailey The University of Melbourne
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Motivation

Non-standardized variance

Limitation of AMI
MI, NMI, and AMI are affected by selection bias.

Solution
This behaviour is due to the non-standardized variance of AMI ⇒ need of
standardization.

Number of clusters c
 2  6 10 14 18 22

A
M

I

-0.02

0

0.02

Figure: AMI values have bigger variation when the number of clusters c for B is high.
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Motivation

Definition of Standardized Mutual Information

The Standardized Mutual Information (SMI) is defined as [Romano et al., 2014]:

SMI =
MI− E [MI]√

Var(MI)

where we compute the expected value and the variance of Mutual Information under
the null hypothesis of independent clusterings A and B.

The SMI value is the number of standard deviations the mutual information is away
from the expected value.

As in [Vinh et al., 2009] we make use of the permutation model to compute the
expected value and the variance:

⇒ The distribution of MI is computed using all possible contingency tables M
obtained by permutations.
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Motivation

Variance Computation

We have to compute MI’s second moment:

E [MI2] =
∑
M

MI(M)2P(M) =
∑
M

 r∑
i=1

c∑
j=1

nij

N
log

nijN

aibj

2

P(M)

=
∑
M

∑
i,j,i′,j′︸ ︷︷ ︸

to swap

nij

N
log

nijN

aibj
·
ni′j′

N
log

ni′j′N

ai′bj′
P(M)

=
∑

i,j,i′,j′

∑
nij

∑
ni′ j′︸ ︷︷ ︸

swapped

nij

N
log

nijN

aibj
·
ni′j′

N
log

ni′j′N

ai′bj′
P(nij , ni′j′ )

Contribution: P(nij , ni′j′ ) computation is technically challenging.
We use the hypergeometric model: drawings from a urn with N marbles with 3 colors,
red, blue, and white.
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Characteristics of standardized measures

Bias Towards More Clusters Correction

MI and AMI unfairly select more often the solution with c = 22 clusters:
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Characteristics of standardized measures

Bias Towards Fewer Data Points Correction
Reference clustering A on N = 100 data points with 4 clusters
B induced independently on N = 20, 40, 60, 80, 100 data points with 4 clusters.
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Characteristics of standardized measures

Unification property

The ability to compute a variance term allows extension of the existing measures:

I Variation of Information

I G -statistic

Definitions:

SVI =
E [VI]− VI√

Var(VI)
, SG =

G − E [G ]√
Var(G)

Theorem: The standardization unifies information theoretic measures:

SMI = SVI = SG
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Characteristics of standardized measures

Speed considerations

The computational complexity of SMI is dominated by the computational complexity
of E [MI2]:

O
(
max {rcN3, c2N3}

)
However

I Useful when the number of data points is small;

I Faster than using the full distribution
(compared to the p-value for the Fisher’s exact test);

I Easily parallelizable.

Time in seconds for 4× 4 tables with N records

100 150 200 250 300 350

SMI 0.65 1.53 2.94 5.00 7.59 11.00
SMI (4 cores) 0.30 0.51 0.97 1.52 2.33 3.35
Fisher’s 0.65 11.32 242.67 844.62 N/A N/A
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Summary

Summary

We discussed some enhancements to mutual information obtained by statistical
correction for chance.

Limitation and solution

I Non-intuitive range of variation

⇒Solution: the Normalized Mutual Information (NMI) [Kvalseth, 1987];

I Non-zero baseline

⇒Solution: the Adjusted Mutual Information (AMI) [Vinh et al., 2009];

I Selection bias

⇒Solution: the Standardized Mutual Information (SMI) [Romano et al., 2014];
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Summary

Take Away Message
Each variant is useful in some specific scenarios and there is a trade-off in
computational complexity:

Maximum agreement achievable

Multiple clustering comparisons

Few data points

AMI

MI

NMI

SMI

Name Range Computational complexity
NMI [0,1]* O(rc)
AMI [0,1] O (max {rN, cN})
SMI [0,∞) O

(
max {rcN3, c2N3}

)
* non statistically normalized

Table: Complexity when comparing two clusterings A and B with r and c clusters on N records.
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Summary

Open issues

There is a number of open issues for SMI:

I SMI achieves strength toward selection bias at the loss of normalization in the
range [0,1]
⇒ need of statistical adjustment which allows normalization;

I SMI computational complexity might be problematic
⇒ at the large number of records N, G -statistic (G = 2N ·MI) can be
approximated with a χ2 distribution. Need to find the scenarios where an exact
SMI can be substituted by an approximation;

I SMI counts the number of standard deviations of MI, it might act as an exact
p-value for MI. p-values quantifies the statistical significance of MI and this
might sometimes interfere with the effect size of MI.

E.g. SMI=25.4 (25.4 standard deviations away from mean). Is this closer to an
effect size or an assessment of statistical significance ?
⇒ need of trade-offs between importance of statistical significance and effect size.
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Summary

Thank you.

Questions?

James Bailey

http://people.eng.unimelb.edu.au/baileyj/

baileyj@unimelb.edu.au

Code available online:

https://sites.google.com/site/icml2014smi/
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Meilǎ, M. (2005).

Comparing clusterings: an axiomatic view.

In ICML ’05: Proceedings of the 22nd international conference on Machine learning, pages
577–584.

Miller, G. A. (1955).

Note on the bias of information estimates.

Information theory in psychology: Problems and methods, 2:95–100.

James Bailey The University of Melbourne

Statistically Correcting for Chance using the Adjusted and Standardized Mutual Information Measures



Mutual Information Normalized Mutual Information Adjusted Mutual Information Standardized Mutual Information Conclusion

References

References IV

Moon, Y.-I., Rajagopalan, B., and Lall, U. (1995).

Estimation of mutual information using kernel density estimators.

Physical Review E, 52(3):2318.
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