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Application: significant itemset mining

Example: Find high-order (multiplicative) combinations of
binary predictors associated with class membership
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Application: significant subgraph mining

Example: Find molecular motifs statistically associated with
drug activity
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Problem statement

OUR GOAL

Find all patterns whose occurrence within an object is statistically
associated with class membership, after correction for multiple
testing
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Tarone’s method and LAMP

Statistical association testing

Goal

Given {(xi , yi )}Ni=1 sampled iid from pXY(x , y), determine if
X 6⊥ Y; i.e. are dependent RVs.

1 Assume X ⊥ Y unless proven otherwise

2 Choose a test statistic T to measure the strength of the
association between X and Y exhibited by the sample
{(xi , yi )}Ni=1

3 Derive the distribution of T under the assumption X ⊥ Y

4 Given t = T ({(xi , yi )}Ni=1), compute the p-value as
p = Pr(T >= t|X ⊥ Y)

5 Reject the assumption X ⊥ Y if p ≤ α

6 / 37



Introduction
Statistical association testing in pattern mining

Westfall-Young Light
Conclusions

Background
The minimum attainable p-value
Tarone’s method and LAMP

Statistical association testing in pattern mining

In pattern mining, every p-value can be obtained from a 2× 2
contingency table:

Variables X = 1 X = 0 Row totals

Y = 1 a b n

Y = 0 c d N − n

Col totals x N − x N

Common test statistics T for this case are:

Fisher’s exact test [Fisher, 1922]
χ2test [Pearson, 1900]
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The multiple hypothesis testing problem

For a dataset with D patterns ⇒ Test Xi ⊥ Y ∀ i = 1, . . . ,D

We have D different contingency tables
Margins n and N the same ∀ i = 1, . . . ,D
Margin x depends on i ⇒ xi

When testing the hypothesis X ⊥ Y via p ≤ α, the probability
of a false discovery occurring is α

What if we test D hypotheses Xi ⊥ Y i = 1, . . . ,D?
Remark: E[FP] = αD

(α = 0.05,D = 2 · 105)⇒ 104 false positives on average
(α = 0.05,D = 2 · 1010)⇒ 108 false positives on average

(α = 0.05,D = 22·10
5

)⇒ 1060205 false positives on average
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The multiple hypothesis testing problem

Family-Wise Error Rate (FWER)

The FWER is defined as the probability of producing one or more
false discoveries. If one can guarantee that FWER ≤ α, then the
multiple hypothesis testing procedure is said to control the FWER
at level α

Solution: Reject each hypothesis Xi ⊥ Y i = 1, . . . ,D iff
pi ≤ δ, where δ is chosen to ensure FWER ≤ α
Remark: FWER� α is not beneficial

Bonferroni correction [Bonferroni, 1936]: Let δ = α
D

What if, as in pattern mining, D is a gigantic number?
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The minimum attainable p-value

In pattern mining, test statistics and attainable p-values are
discrete...
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The minimum attainable p-value

Thus, a minimum attainable p-value exists...
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The concept of testability

Given x , n and N, let Ψ(x) = min
a
p(a, x , n,N) be the

minimum p-value attainable by the discrete test

Remark: Well-defined since (x,n,N) are assumed fixed!

For each pattern i = 1, . . . ,D the minimum attainable p-value
Ψ(xi ) is a function of the pattern support xi

If Ψ(xi ) > δ, the i-th pattern can never be significant at
corrected level δ

Define IT (δ) = { i ∈ { 1, . . . ,D } |Ψ(xi ) ≤ δ }, the set of
testable hypotheses at level δ

What are the implications?
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An improved Bonferroni Correction for discrete data

This phenomenon was first exploited in [Tarone, 1990]

Tarone showed that FWER ≤ δ |IT (δ)|
To ensure FWER ≤ α choose δ∗tar = max { δ|δ |IT (δ)| ≤ α }
Usually, δ∗tar � α

D , leading to greatly increased statistical
power

Computing δ∗tar as proposed by Tarone is unfeasible
computationally

In [Terada et al., 2013a], Terada et. al. link Tarone’s method
to frequent itemset mining, proposing the Limitless-Arity
Multiple Testing Procedure (LAMP)
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Addressing the dependence between test statistics

Tarone’s method ignores the dependence structure between
patterns: FWER(δ∗tar)� α frequently

The optimal FWER-controlling method would use δ∗ such
that:

δ∗ = argmax
δ

δ s.t. FWER(δ) ≤ α

Evaluating FWER(δ) in closed-form is not possible

Solution: Use resampling methods, like Westfall-Young (WY)
permutation testing [Westfall and Young, 1993]
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The Westfall-Young permutation testing procedure

Step 1: Randomly permute class labels {yi}Ni to obtain {ỹi}Ni
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PERMUTATION

By construction, Xi ⊥ Ỹ ∀ i = 1, . . . ,D (i.e. no pattern is
associated with the class labels)
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The Westfall-Young permutation testing procedure

Step 2: Compute the p-values p̃i for each pattern
i = 1, . . . ,D using the permuted labels Ỹ

Since Xi ⊥ Ỹ ∀ i = 1, . . . ,D, any pattern for which p̃i ≤ δ
would be a false positive at level δ

Step 3: Compute pmin = min
i=1,...,D

p̃i

FP > 0⇔ pmin ≤ δ

Step 4: Repeat steps 1-3 J times, obtaining
{
p
(j)
min

}J

j=1

FWER = Pr(FP > 0) ≈ 1
J

∑J
j=1 1

[
p
(j)
min ≤ δ

]
Step 5: δ∗ can be found as the α-quantile of

{
p
(j)
min

}J

j=1
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FastWY

Computing pmin naively requires enumerating and computing
J p-values for all D patterns

Terada et. al. propose in [Terada et al., 2013b] the FastWY
algorithm as an extension of LAMP to WY permutation
testing

FastWY provides a way to speedup the computation of pmin

over the naive approach

KEY CONCEPT

The target is computing pmin = min
i=1,...,D

p̃i . If p′min = min
i∈I(δ)

p̃i

satisfies p′min ≤ δ, then p′min = pmin and the search can be stopped
early.
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Linking testability and frequent pattern mining
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FastWY algorithm

Algorithm 1 FASTWY as proposed in [Terada et al., 2013b]

1: function FASTWY
2: for j = 1, . . . , J do
3: y(j) ← permute(y)
4: σ ← n + 1
5: repeat
6: σ ← σ − 1, δσ ← Ψ(σ)
7: ÎT (σ)← FPM({1, . . . ,P} , σ)
8: Compute pi ∀ i ∈ ÎT (σ)

9: p
(j)
min ← min

i∈ÎT (σ)
pi

10: until p
(j)
min ≤ δσ

11: end for

12: δ∗ ← α-quantile of
{
p
(j)
min

}J

j=1

13: end function
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Limitations of FastWY

1 Like LAMP, relies on using a monotonically decreasing
surrogate Ψ̂(x) ≤ Ψ(x)

2 Uses a decremental (in support threshold) search strategy

3 Needs to either repeat pattern mining J ≈ 104 times or store
the occurrence list of every frequent pattern

4 Requires computing the whole set
{
p
(j)
min

}J

j=1
exactly

5 As a consequence of (3), with overwhelming probability, some

p
(j)
min will require mining patterns with very low supports

Westfall-Young light removes all these limitations!
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Removing limitation (1)
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Removing limitations (1)-(4): the WY-light algorithm

Algorithm 2 WY-light core

1: function PROCESSPATTERN
2: if xi ∈ Σk then
3: Compute p̃

(j)
i ∀ j = 1, . . . , J

4: p
(j)
min ← min(p

(j)
min, p̃

(j)
i ) ∀ j = 1, . . . , J

5: FWER← 1
J

∑J
j=1 1

[
p
(j)
min ≤ δ

]
6: while FWER > α do
7: k ← k + 1
8: Update δk , Σk and σk = min {x |x ∈ Σk}
9: end while

10: end if
11: Enumerate all patterns j ∈ Children(i)|xj ≥ σk
12: end function
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Removing limitations (1)-(4): the WY-light algorithm

Property 1 Whenever a new pattern i is processed, the updated
empirical FWER estimate can never decrease

Property 2 FWER(δ) for all δ ∈ [0, δk ] can be evaluated exactly
using only the p-values of patterns in IT (Σk).

Property 3 For fixed xi , n, and N, the computational complexity
of evaluating Fisher’s exact test p-value pi (γ) for a
single value of γ or for all possible values of γ in
[ai ,min, ai ,max] is the same and equal to O(min{xi , n})

24 / 37



Introduction
Statistical association testing in pattern mining

Westfall-Young Light
Conclusions

Preliminaries
State-of-the-art
Our proposal
Results

Runtime in itemset mining
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Memory usage in itemset mining
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Runtime in subgraph mining
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Memory usage in subgraph mining
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Final support in itemset mining
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Final support in subgraph mining
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Power comparison: LAMP vs WY
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Conclusions

Discovering patterns significantly associated with class
membership is a fundamental problem in data mining

Rigorous correction for multiple hypothesis testing is
mandatory if statistically reliable results are needed

The discrete nature of test statistics in pattern mining can be
exploited to get great gains in statistical power

Westfall-Young light allows applying the Westfall-Young
permutation testing procedure to large-scale datasets

Scalable pattern mining under optimal FWER-control!
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