Exploiting discrete test statistics for significant pattern mining Theory and applications

Felipe Llinares López

D-BSSE, ETH Zürich

February 16th, 2015

Department of Biosystems Science and Engineering

Outline

Introduction

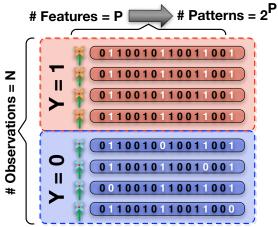
- 2 Statistical association testing in pattern mining
 - Background
 - The minimum attainable *p*-value
 - Tarone's method and LAMP

3 Westfall-Young Light

- Preliminaries
- State-of-the-art
- Our proposal
- Results

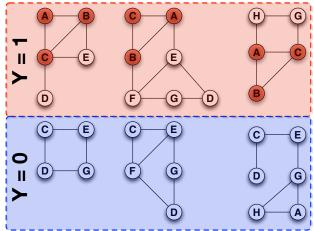
Application: significant itemset mining

• *Example*: Find high-order (multiplicative) combinations of binary predictors associated with class membership



Application: significant subgraph mining

• *Example*: Find molecular motifs statistically associated with drug activity



Introduction

Statistical association testing in pattern mining Westfall-Young Light Conclusions

Problem statement

OUR GOAL

Find **all** patterns whose occurrence within an object is **statistically associated** with class membership, **after correction for multiple testing**

Background The minimum attainable *p*-value Tarone's method and LAMP

Statistical association testing

Goal

Given $\{(x_i, y_i)\}_{i=1}^N$ sampled iid from $p_{\mathbf{XY}}(x, y)$, determine if $\mathbf{X} \not\perp \mathbf{Y}$; i.e. are dependent RVs.

- $\textcircled{O} Assume \textbf{X} \perp \textbf{Y} unless proven otherwise}$
- Choose a *test statistic* T to measure the strength of the association between X and Y exhibited by the sample {(x_i, y_i)}^N_{i=1}
- **③** Derive the distribution of ${\bf T}$ under the assumption ${\bf X}\perp {\bf Y}$
- Given $t = T(\{(x_i, y_i)\}_{i=1}^N)$, compute the *p*-value as $p = \Pr(\mathbf{T} \ge t | \mathbf{X} \perp \mathbf{Y})$
- **(**) *Reject* the assumption $\mathbf{X} \perp \mathbf{Y}$ if $p \leq \alpha$

Background The minimum attainable *p*-value Tarone's method and LAMP

Statistical association testing in pattern mining

• In pattern mining, every *p*-value can be obtained from a 2 × 2 contingency table:

Variables	X = 1	X = 0	Row totals
$\mathbf{Y} = 1$	а	b	n
Y = 0	С	d	N - n
Col totals	x	N-x	N

- Common test statistics **T** for this case are:
 - Fisher's exact test [Fisher, 1922]
 - $\chi^2 test$ [Pearson, 1900]

Background The minimum attainable *p*-value Tarone's method and LAMP

The multiple hypothesis testing problem

• For a dataset with D patterns \Rightarrow Test $\mathbf{X}_i \perp \mathbf{Y} \; \forall \; i = 1, \dots, D$

- We have D different contingency tables
- Margins *n* and *N* the same $\forall i = 1, \dots, D$
- Margin x depends on $i \Rightarrow x_i$
- When testing the hypothesis X ⊥ Y via p ≤ α, the probability of a false discovery occurring is α
- What if we test D hypotheses $X_i \perp Y$ i = 1, ..., D?
 - Remark: $\mathbb{E}[FP] = \alpha D$
 - $(\alpha = 0.05, D = 2 \cdot 10^5) \Rightarrow 10^4$ false positives on average
 - $(\alpha = 0.05, D = 2 \cdot 10^{10}) \Rightarrow 10^8$ false positives on average
 - $(\alpha = 0.05, D = 2^{2 \cdot 10^5}) \Rightarrow 10^{60205}$ false positives on average

Background The minimum attainable *p*-value Tarone's method and LAMP

The multiple hypothesis testing problem

Family-Wise Error Rate (FWER)

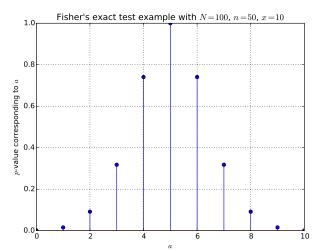
The FWER is defined as the probability of producing one or more false discoveries. If one can guarantee that $FWER \leq \alpha$, then the multiple hypothesis testing procedure is said to control the FWER at level α

- Solution: Reject each hypothesis $X_i \perp Y$ i = 1, ..., D iff $p_i \leq \delta$, where δ is chosen to ensure FWER $\leq \alpha$
- *Remark:* FWER $\ll \alpha$ is not beneficial
- Bonferroni correction [Bonferroni, 1936]: Let $\delta = \frac{\alpha}{D}$
- What if, as in pattern mining, D is a gigantic number?

Background **The minimum attainable** *p***-value** Tarone's method and LAMP

The minimum attainable *p*-value

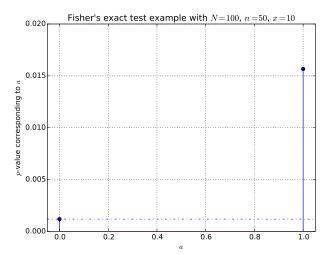
In pattern mining, test statistics and attainable *p*-values are discrete...



Background **The minimum attainable** *p***-value** Tarone's method and LAMP

The minimum attainable *p*-value

Thus, a minimum attainable *p*-value exists...



Background **The minimum attainable** *p***-value** Tarone's method and LAMP

The concept of testability

- Given x, n and N, let Ψ(x) = minp_ap(a, x, n, N) be the minimum p-value attainable by the discrete test
 - Remark: Well-defined since (x,n,N) are assumed fixed!
- For each pattern i = 1, ..., D the minimum attainable *p*-value $\Psi(x_i)$ is a function of the pattern support x_i
- If Ψ(x_i) > δ, the *i*-th pattern can never be significant at corrected level δ
- Define *I_T*(δ) = { *i* ∈ { 1,..., D } |Ψ(x_i) ≤ δ }, the set of testable hypotheses at level δ
- What are the implications?

An improved Bonferroni Correction for discrete data

- This phenomenon was first exploited in [Tarone, 1990]
- Tarone showed that $FWER \leq \delta |\mathcal{I}_{\mathcal{T}}(\delta)|$
- To ensure $FWER \leq \alpha$ choose $\delta_{tar}^* = \max \{ \delta | \delta | \mathcal{I}_{\mathcal{T}}(\delta) | \leq \alpha \}$
- Usually, $\delta^*_{\rm tar} \gg \frac{\alpha}{D},$ leading to greatly increased statistical power
- \bullet Computing δ^*_{tar} as proposed by Tarone is unfeasible computationally
- In [Terada et al., 2013a], Terada et. al. link Tarone's method to frequent itemset mining, proposing the Limitless-Arity Multiple Testing Procedure (LAMP)

Preliminaries State-of-the-art Our proposal Results

Westfall-Young Light

Felipe Llinares, Mahito Sugiyama, Laetitia Papaxanthos, Karsten Borgwardt

Preliminaries State-of-the-art Our proposal Results

Addressing the dependence between test statistics

- Tarone's method ignores the dependence structure between patterns: $FWER(\delta^*_{tar}) \ll \alpha$ frequently
- The optimal FWER-controlling method would use δ^* such that:

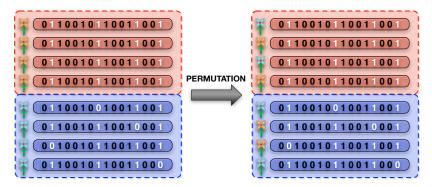
$$\delta^* = \operatorname*{argmax}_{\delta} \delta ext{ s.t. FWER}(\delta) \leq lpha$$

- Evaluating $\mathrm{FWER}(\delta)$ in closed-form is not possible
- Solution: Use resampling methods, like Westfall-Young (WY) permutation testing [Westfall and Young, 1993]

Preliminaries State-of-the-art Our proposal Results

The Westfall-Young permutation testing procedure

• Step 1: Randomly permute class labels $\{y_i\}_i^N$ to obtain $\{\tilde{y}_i\}_i^N$



By construction, X_i ⊥ Y ∀ i = 1,..., D (i.e. no pattern is associated with the class labels)

Preliminaries State-of-the-art Our proposal Results

The Westfall-Young permutation testing procedure

- Step 2: Compute the *p*-values \tilde{p}_i for each pattern
 - $i=1,\ldots,D$ using the permuted labels $ilde{\mathbf{Y}}$
 - Since X_i ⊥ Υ ∀ i = 1,..., D, any pattern for which p̃_i ≤ δ would be a false positive at level δ

• **Step 3:** Compute
$$p_{\min} = \min_{i=1,\dots,D} \tilde{p}_i$$

• $FP > 0 \Leftrightarrow p_{\min} \le \delta$

• Step 4: Repeat steps 1-3 J times, obtaining $\left\{p_{\min}^{(j)}\right\}_{j=1}^{J}$

• FWER = Pr(FP > 0)
$$\approx \frac{1}{J} \sum_{j=1}^{J} \mathbb{1} \left[\boldsymbol{p}_{\min}^{(j)} \leq \delta \right]$$

• Step 5: δ^* can be found as the α -quantile of $\left\{ p_{\min}^{(j)} \right\}_{j=1}^{J}$

Preliminaries State-of-the-art Our proposal Results

FastWY

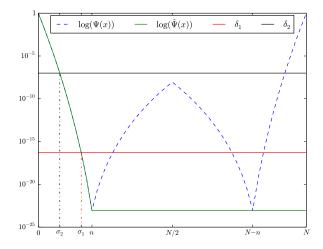
- Computing p_{min} naively requires enumerating and computing J p-values for all D patterns
- Terada et. al. propose in [Terada et al., 2013b] the FastWY algorithm as an extension of LAMP to WY permutation testing
- FastWY provides a way to speedup the computation of p_{\min} over the naive approach

KEY CONCEPT

The target is computing $p_{\min} = \min_{i=1,...,D} \tilde{p}_i$. If $p'_{\min} = \min_{i \in \mathcal{I}(\delta)} \tilde{p}_i$ satisfies $p'_{\min} \leq \delta$, then $p'_{\min} = p_{\min}$ and the search can be stopped early.

Preliminaries State-of-the-art Our proposal Results

Linking testability and frequent pattern mining



Preliminaries State-of-the-art Our proposal Results

FastWY algorithm

Algorithm 1 FASTWY as proposed in [Terada et al., 2013b]

function FASTWY 1. for i = 1, ..., J do 2: $\mathbf{v}^{(j)} \leftarrow \text{permute}(\mathbf{v})$ 3: $\sigma \leftarrow n+1$ 4. 5: repeat $\sigma \leftarrow \sigma - 1, \ \delta_{\sigma} \leftarrow \Psi(\sigma)$ 6: $\hat{\mathcal{I}}_{\mathcal{T}}(\sigma) \leftarrow \text{FPM}(\{1,\ldots,P\},\sigma)$ 7. Compute $p_i \forall i \in \hat{\mathcal{I}}_T(\sigma)$ 8: $p_{\min}^{(j)} \leftarrow \min_{i \in \hat{\mathcal{I}}_{\mathcal{T}}(\sigma)} p_i$ 9: until $p_{\min}^{(j)} \leq \delta_{\sigma}$ 10: 11: end for $\delta^* \leftarrow \alpha$ -quantile of $\left\{ p_{\min}^{(j)} \right\}_{i=1}^J$ 12: 13: end function

Preliminaries State-of-the-art Our proposal Results

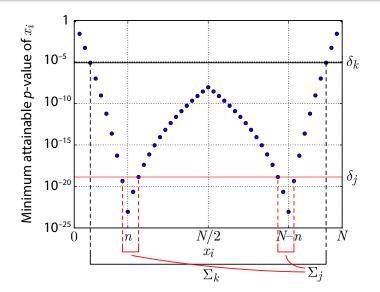
Limitations of FastWY

- Like LAMP, relies on using a monotonically decreasing surrogate Ψ̂(x) ≤ Ψ(x)
- **2** Uses a decremental (in support threshold) search strategy
- Needs to either repeat pattern mining $J \approx 10^4$ times or store the occurrence list of every frequent pattern
- Requires computing the whole set $\left\{p_{\min}^{(j)}\right\}_{j=1}^{J}$ exactly
- As a consequence of (3), with overwhelming probability, some *p*^(j)_{min} will require mining patterns with very low supports

Westfall-Young light removes all these limitations!

Preliminaries State-of-the-art Our proposal Results

Removing limitation (1)



Preliminaries State-of-the-art Our proposal Results

Removing limitations (1)-(4): the WY-light algorithm

Algorithm 2 WY-light core

- 1: function PROCESSPATTERN
- 2: **if** $x_i \in \Sigma_k$ **then** 3: Compute $\tilde{p}_i^{(j)} \forall j = 1, ..., J$ 4: $p_{\min}^{(j)} \leftarrow \min(p_{\min}^{(j)}, \tilde{p}_i^{(j)}) \forall j = 1, ..., J$ 5: FWER $\leftarrow \frac{1}{J} \sum_{j=1}^J \mathbb{1} \left[p_{\min}^{(j)} \leq \delta \right]$ 6: **while** FWER $> \alpha$ **do**
- 7: $k \leftarrow k+1$
- 8: Update δ_k , Σ_k and $\sigma_k = \min \{x | x \in \Sigma_k\}$
- 9: end while
- 10: end if
- 11: Enumerate all patterns $j \in \text{Children}(i) | x_j \ge \sigma_k$
- 12: end function

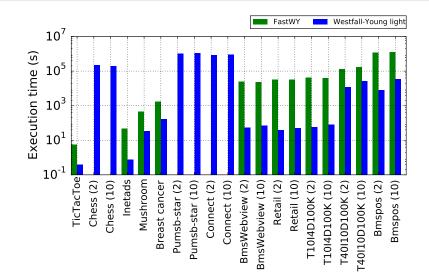
Preliminaries State-of-the-art Our proposal Results

Removing limitations (1)-(4): the WY-light algorithm

- Property 1 Whenever a new pattern *i* is processed, the updated empirical FWER estimate can never decrease
- Property 2 FWER(δ) for all $\delta \in [0, \delta_k]$ can be evaluated exactly using only the *p*-values of patterns in $\mathcal{I}_T(\Sigma_k)$.
- Property 3 For fixed x_i , n, and N, the computational complexity of evaluating Fisher's exact test p-value $p_i(\gamma)$ for a single value of γ or for all possible values of γ in $[a_{i,\min}, a_{i,\max}]$ is the same and equal to $O(\min\{x_i, n\})$

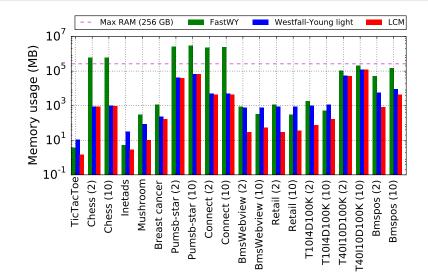
Preliminaries State-of-the-art Our proposal **Results**

Runtime in itemset mining



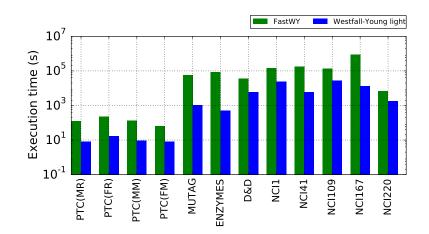
Preliminaries State-of-the-art Our proposal Results

Memory usage in itemset mining



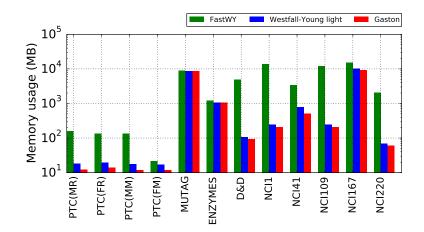
Preliminaries State-of-the-art Our proposal Results

Runtime in subgraph mining



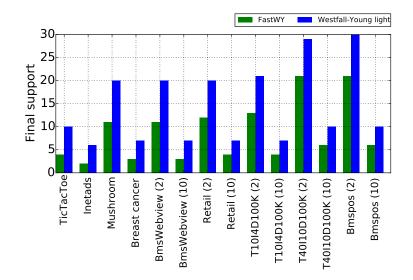
Preliminaries State-of-the-art Our proposal Results

Memory usage in subgraph mining



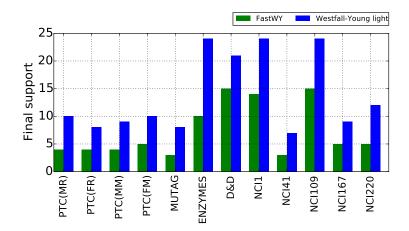
Preliminaries State-of-the-art Our proposal Results

Final support in itemset mining



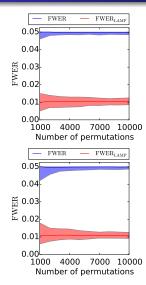
Preliminaries State-of-the-art Our proposal Results

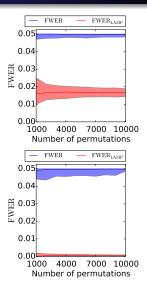
Final support in subgraph mining



Preliminaries State-of-the-art Our proposal Results

Power comparison: LAMP vs WY





Conclusions

- Discovering patterns significantly associated with class membership is a fundamental problem in data mining
- Rigorous correction for multiple hypothesis testing is mandatory if statistically reliable results are needed
- The discrete nature of test statistics in pattern mining can be exploited to get great gains in statistical power
- Westfall-Young light allows applying the Westfall-Young permutation testing procedure to large-scale datasets
 - Scalable pattern mining under optimal FWER-control!

Thank you!

References I

Bonferroni, C. E. (1936).

Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3–62.

Fisher, R. A. (1922).

On the Interpretation of χ^2 from Contingency Tables, and the Calculation of P.

Journal of the Royal Statistical Society, 85(1):87–94.

References II

Pearson, K. (1900).

X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.

Philosophical Magazine Series 6, 50:157–175.

Tarone, R. E. (1990).

A modified bonferroni method for discrete data. *Biometrics*, 46(2):515–522.

References III

Terada, A., Okada-Hatakeyama, M., Tsuda, K., and Sese, J. (2013a).
 Statistical significance of combinatorial regulations.
 Proceedings of the National Academy of Sciences, 110(32):12996–13001.

Terada, A., Tsuda, K., and Sese, J. (2013b).

Fast westfall-young permutation procedure for combinatorial regulation discovery.

In *IEEE International Conference on Bioinformatics and Biomedicine*, pages 153–158.

Westfall, P. H. and Young, S. S. (1993).
 Resampling-based multiple testing.
 Statistics in Medicine, 13(10):1084–1086.

References IV