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be especially difficult to estimate the
number of distinct genes influencing a

trait, except in very favorable situations
(39), and to identify penetrance parame-
ters associated with multiple loci (40).

Defining Diseases

Given the many problems that can hamper
genetic dissection of complex traits, genet-
icists try to stack the deck in their favor. By
narrowing the definition of a disease or

restricting the patient population, it is often
possible to work with a trait that is more

nearly Mendelian in its inheritance pattern
and more likely to be homogeneous. The
extent to which redefinition simplifies the
task of genetic mapping can be measured by
the resulting increase in the relative risk XR.

Although there is no guaranteed method to
increase A.' four criteria are often useful.

Clinical phenotype. For example, when
colon cancer is restricted to cases with ex-

treme polyposis, the trait becomes a simple
autosomal dominant one which allowed
positional cloning of the APC gene on

chromosome 5 (41). Other forms of colon
cancer can be distinguished by the pheno-
type of replication errors in tumors (42). In
studying hypertension, one can increase X
by focusing on cases with combined hyper-
tension and hyperlipidemia (43).

Age at onset. Breast cancer and Alzhei-
mer's disease are rendered genetically more

homogeneous by focusing on early-onset
cases [although the latter can be caused by
at least three independent loci (44)]. Sim-
ilarly, the relative risk for death from heart
attack is much greater for early-onset cases

(XS 7 in men and 15 in women under

age 65) as compared with late-onset cases

(Xs < 2) (45).
Family history. For example, the sister of

a woman with breast cancer has a much
greater risk if her mother is also affected
(35, 36). Hereditary nonpolyposis colon
cancer (12) was genetically mapped by de-
fining the trait to require the presence of at
least two other affected relatives.

Severity. For continuous traits, it often
pays to consider as affected only those in-
dividuals at the extreme ends of the trait
distribution. For example, one might select
families for a hypertension study on the
basis of the presence of at least one member
with blood pressure exceeding 140/90. Such
selection can greatly increase the ability to
map genes, both in human families (46) and
experimental crosses (47).

Another way to improve the prospects
for genetic dissection is to focus on specific
ethnic groups. Population genetic theory
and data suggest that there will be greater
genetic and allelic homogeneity in a more

genetically isolated group (such as Sardin-
ians, Basques, Finns, and Japanese) than in

a large, mixed population (such as is in New
York City or Los Angeles). Different ethnic
groups may shed light on different aspects of
a disease, which might be much harder to
discern in an outbred population. For ex-
ample, it has been suggested that there may
be differences in the genetic etiology of type
II diabetes between Mexican Americans
and Scandinavians, with somewhat higher
frequency of early insulin resistance in the
former and an early pancreatic beta cell
defect in the latter (48). Focusing on a
highly restricted population may also offer
advantages for eventual positional cloning,
because one may be able to exploit linkage
disequilibrium for fine-structure genetic
mapping (discussed below).

Genetic Dissection:
The Fourfold Way

The methods available for genetic dissec-
tion of complex traits fall neatly into four
categories: linkage analysis, allele-sharing
methods, association studies in human pop-
ulations, and genetic analysis of large cross-
es in model organisms such as the mouse
and rat.

Linkage Analysis

Linkage analysis involves proposing a mod-
el to explain the inheritance pattern of
phenotypes and genotypes observed in a
pedigree (Fig. 1). It is the method of choice
for simple Mendelian traits because the al-
lowable models are few and easily tested.
However, applications to complex traits can
be more problematic, because it may be
hard to find a precise model that adequately
explains the inheritance pattern.

Formally, linkage analysis consists of
finding a model M,, positing a specific lo-
cation for a trait-causing gene, that is much
more likely to have produced the observed
data than a null hypothesis MO, positing no
linkage to a trait-causing gene in the region.
The evidence for M1 versus MO is measured
by the likelihood ratio, LR = Prob

Linkage analysis

Fig. 1. Linkage analysis involves constructing a
transmission model to explain the inheritance of a
disease in pedigrees. The model is straightfor-
ward for simple Mendelian traits but can become
very complicated for complex traits. Linkage anal-
ysis has been applied to hundreds of simple Men-
delian traits, as well as to such situations as ge-
netic heterogeneity in breast cancer and two-
gene interactions in multiple sclerosis.
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(DataIM1)/Prob (Data M0), or, equivalent-
ly, by the lod score, Z = logl(LR) (49, 50).

The model M, is typically chosen from
among a family of models M((O), where (D is
a parameter vector that might specify such
information as the location of the trait-
causing locus, the allele frequency at the
trait and marker loci, the penetrance func-
tion, and the transmission frequencies from
parent to child. Many of these parameters
may already be known (such as penetrance
functions from prior segregation analysis or
marker allele frequencies from population
surveys). The remaining, unknown param-
eters are chosen to be the maximum likeli-
hood (ML) estimate, that is, the value (D
that makes the data most likely to have
occurred (51). The null model MO corre-
sponds to a specific null hypothesis about
the parameters, (D0.

For example, the model for a simple
Mendelian recessive or dominant disease
is completely specified except for the re-
combination frequency 0 between the dis-
ease gene and a marker; the null hypoth-
esis of nonlinkage corresponds to 0
50% recombination.

The ML model M(4)) is accepted (com-
pared with M0) if the corresponding maxi-
mum lod score Z is large, that is, exceeds a
critical threshold T. Of course, a crucial
issue is the appropriate significance thresh-
old. The traditional lod score threshold has
been 3.0 (50, 52), although the appropri-
ateness of this choice is discussed in the
section on statistical significance.

Applications. Linkage analysis is the cur-
rent workhorse of human genetic mapping,
having been applied to hundreds of simple
monogenic traits. Linkage analysis has also
been successfully applied to genetically het-
erogeneous traits in some cases. The sim-
plest situation is when unequivocal linkage
can be demonstrated in a single large ped-
igree (with Z >> 3), even though other
families may show no linkage. This has
been done for such diseases as adult poly-
cystic kidney disease, early-onset Alzhei-
mer's disease, and psoriasis (53). If linkage
cannot be established on the basis of any
single pedigree, one can ask whether a sub-
set of the pedigrees collectively shows evi-
dence of linkage. Of course, one cannot
simply choose those families with positive
lod scores and exclude those with negative
lod scores, as such an ex post selection
criterion will always produce a high positive
lod score. Instead, one must explicitly allow
for genetic heterogeneity within the linkage
model (through the inclusion of an admix-
ture parameter ot specifying the proportion
of linked families), although care is required
because the resulting lod score has irregular
statistical properties (54). Alternatively,
families can be selected on the basis of a
priori considerations. An example of this
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Testing for deviations from HWE can be carried 
out using a Pearson goodness-of-fit test, often known 
simply as ‘the χ2 test’ because the test statistic has 
approximately a χ2 null distribution. Be aware, how-
ever, that there are many different χ2 tests. The Pearson 
test is easy to compute, but the χ2 approximation can 
be poor when there are low genotype counts, and it is 
better to use a Fisher exact test, which does not rely on 

the χ2 approximation7–9. The open-source data-analysis 
software R (see online links box) has an R genetics 
package that implements both Pearson and Fisher tests 
of HWE, and PEDSTATS also implements exact tests9. 
(All statistical genetics software cited in the article can 
be found at the Genetic Analysis Software website, 
which can be found in the online links box).

A useful tool for interpreting the results of HWE and 
other tests on many SNPs is the log quantile–quantile 
(QQ) P-value plot (FIG. 1): the negative logarithm of the 
ith smallest P value is plotted against −log (i / (L + 1)), 
where L is the number of SNPs. Deviations from the 
y = x line correspond to loci that deviate from the null 
hypothesis10.

Missing genotype data. For single-SNP analyses, if a 
few genotypes are missing there is not much problem. 
For multipoint SNP analyses, missing data can be more 
problematic because many individuals might have one 
or more missing genotypes. One convenient solution is 
data imputation: replacing missing genotypes with pre-
dicted values that are based on the observed genotypes 
at neighbouring SNPs. This sounds like cheating, but 
for tightly linked markers data imputation can be reli-
able, can simplify analyses and allows better use of the 
observed data. Imputation methods either seek a ‘best’ 
prediction of a missing genotype, such as a maximum-
likelihood estimate (single imputation), or randomly select 
it from a probability distribution (multiple imputations). 
The advantage of the latter approach is that repetitions 
of the random selection can allow averaging of results or 
investigation of the effects of the imputation on resulting 
analyses11.

Most software for phase assignment (see below) also 
imputes missing alleles. There are also more general impu-
tation methods: for example, ‘hot-deck’ approaches11, 
in which the missing genotype is copied from another 
individual whose genotype matches at neighbouring loci, 
and regression models that are based on the genotypes 
of all individuals at several neighbouring loci12.

These analyses typically rely on missingness being 
independent of both the true genotype and the pheno-
type. This assumption is widely made, even though its 
validity is often doubtful. For example, as noted above, 
heterozygotes might be missing more often than homo-
zygotes. What is worse, case samples are often collected 
differently from controls, which can lead to differential 
rates of missingness even if genotyping is carried out 
blind to case–control status. The combination of these 
two effects can lead to serious biases13. One simple way 
to investigate differential missingness between cases 
and controls is to code all observed genotypes as 1 and 
missing genotypes as 0, and test for association of this 
variable with case–control status.

Haplotype and genotype data. Underlying an individ-
ual’s genotypes at multiple tightly linked SNPs are the 
two haplotypes, each containing alleles from one parent. 
I discuss below the merits of analyses that are based on 
phased haplotype data rather than unphased genotypes, 
and consider here only ways to obtain haplotype data.

Box 1 | Rationale for association studies

Population association studies compare unrelated individuals, but ‘unrelated’ actually 
means that relationships are unknown and presumed to be distant. Therefore, we 
cannot trace transmissions of phenotype over generations and must rely on 
correlations of current phenotype with current marker alleles. Such a correlation might 
be generated by one or more groups of cases that share a relatively recent common 
ancestor at a causal locus. Recombinations that have occurred since the most recent 
common ancestor of the group at the locus can break down associations of phenotype 
with all but the most tightly linked marker alleles, permitting fine mapping if marker 
density is sufficiently high (say, ≥1 marker per 10 kb, but this depends on local levels of 
linkage disequilibrium).

This principle is illustrated in the figure, in which for simplicity I assume haploidy, 
such as for X-linked loci in males. The coloured circles indicate observed alleles (or 
haplotypes), and the colours denote case or control status; marker information is not 
shown. The alleles within the shaded oval all descend from a risk-enhancing mutant 
allele that perhaps arose some hundreds of generations in the past (red star), and so 
there is an excess of cases within this group. Consequently, there is an excess of the 
mutant allele among cases relative to controls, as well as of alleles that are tightly linked 
with it. The figure also shows a second, minor mutant allele at the same locus that might 
not be detectable because it contributes to few cases.

Although the SNP markers that are used in association studies can have up to four 
nucleotide alleles, because of their low mutation rate most are diallelic, and many 
studies only include diallelic SNPs. With increasing interest in deletion polymorphisms5, 
triallelic analyses of SNP genotypes might become more common (treating deletion as a 
third allele), but in this article I assume all SNPs to be diallelic.

Broadly speaking, association studies are sufficiently powerful only for common causal 
variants. The threshold for ‘common’ depends on sample and effect sizes as well as 
marker frequencies90, but as a rough guide the minor-allele frequency might need to be 
above 5%. Arguments for the common-disease common-variant (CDCV) hypothesis 
essentially rest on the fact that human effective population sizes are small1. A related 
argument is that many alleles that are now disease-predisposing might have been 
advantageous in the past (for example, those that favour fat storage). In addition, 
selection pressure is expected to be weak on late-onset diseases and on variants that 
contribute only a small risk. Although some common variants that underlie complex 
diseases have been identified91, we still do not have a clear idea of the extent to which 
the CDCV hypothesis holds.
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Geneticists have made substantial progress in
identifying the genetic basis of many human
diseases, at least those with conspicuous deter-
minants. These successes include Huntington's
disease, Alzheimer's disease, and some forms of
breast cancer. However, the detection of ge-
netic factors for complex diseases-such as
schizophrenia, bipolar disorder, and diabetes-
has been far more complicated. There have
been numerous reports of genes or loci that
might underlie these disorders, but few ofthese
findings have been replicated. The modest na-
ture ofthe gene effects for these disorders likely
explains the contradictory and inconclusive
claims about their identification. Despite the
small effects of such genes, the magnitude of
their attributable risk (the proportion ofpeople
affected due to them) may be large because they
are quite frequent in the population, making
them of public health significance.

Has the genetic study ofcomplex disorders
reached its limits? The persistent lack of
replicability of these reports of linkage be-
tween various loci and complex diseases
might imply that it has. We argue below that
the method that has been used successfully
(linkage analysis) to find major genes has lim-
ited power to detect genes of modest effect,
but that a different approach (association
studies) that utilizes candidate genes has far
greater power, even if one needs to test every
gene in the genome. Thus, the future of the
genetics ofcomplex diseases is likely to require
large-scale testing by association analysis.
How large does a gene effect need to be in

order to be detectable by linkage analysis?
We consider the following model: Suppose a
disease susceptibility locus has two alleles A
and a, with population frequencies p and q =
1 - p, respectively. There are three geno-
types: AA, Aa, and aa. We define genotypic
relative risks (GRR, the increased chance
that an individual with a particular genotype
has the disease) as follows: Let the risk for
individuals ofgenotype Aa be y times greater
than the risk for individuals with genotype
aa, a GRR of y. We assume a multiplicative
relation for two A alleles, so that the GRR
for genotype AA is y2. The method of link-

N. Risch is in the Department of Genetics, Stanford
University School of Medicine, Stanford, CA 94305-5120,
USA. E-mail: risch@lahmed.stanford.edu. K. Merikangas
is in the Departments of Epidemiology and Psychiatry,
Unit, Yale University School of Medicine, New Haven,
CT 06510, USA. E-mail: kath@zeus.psych.yale.edu
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age analysis we have chosen for this argu-
ment is a popular current paradigm in which
pairs of siblings, both with the disease, are
examined for sharing of alleles at multiple
sites in the genome defined by genetic mark-
ers. The more often the affected siblings
share the same allele at a particular site, the
more likely the site is close to the disease
gene. Using the formulas in (1), we calculate
the expected proportion Y of alleles shared by
a pair of affected siblings for the best possible
case-that is, a closely linked marker locus
(recombination fraction 0 = 0) that is fully
informative (heterozygosity = 1) (2)-as

1 +W wherew= pq(y-1)2
2+w (py+q)2

If there is no linkage of a marker at a
particular site to the disease, the siblings
would be expected to share alleles 50% of the
time; that is, Y would equal 0.5. Values of Y
for various values of p and y are given in the
third column of the table. For an allele of
moderate frequency (p is 0.1 to 0.5) that con-
fers a GRR (y) of fourfold or greater, there is a
detectable deviation ofYfrom the null value of
0.5. On the other hand, for an allele conferring
aGRRof2 or less, the expected marker-sharing
only marginally exceeds 50%, for any allele
frequency (p). Thus, it is clear that the use of

linkage analysis for loci conferring GRR of
about 2 or less will never allow identification
because the number of families required
(more than -2500) is not practically achiev-
able.

Although tests oflinkage for genes ofmod-
est effect are of low power, as shown by the
above example, direct tests ofassociation with
a disease locus itself can still be quite strong.
To illustrate this point, we use the transmis-
sion/disequilibrium test ofSpielman et al. (3).
In this test, transmission of a particular allele
at a locus from heterozygous parents to their
affected offspring is examined. Under Mende-
lian inheritance, all alleles should have a 50%
chance of being transmitted to the next gen-
eration. In contrast, if one of the alleles is
associated with disease risk, it will be trans-
mitted more often than 50% of the time.

For this approach, we do not need families
with multiple affected siblings, but can focus
just on single affected individuals and their
parents. For the same model given above, we
can calculate the proportion of heterozygous
parents as pq(y + 1)/(py + q)(4). Similarly,
the probability for a heterozygote parent to
transmit the high risk A allele is just y/( 1 + y).
Association tests can also be performed for
pairs of affected siblings. When the locus is
associated with disease, the transmission excess
over 50% is the same as for single offspring, but
the probability of parental heterozygosity is in-
creased at low values ofp; for higher values ofp,
the probability ofparental heterozygosity is de-
creased. The formula for parental heterozygos-
ity for an affected pair of siblings for the same
genetic model as used in the first example is

h- pq(y+ 1)2
2 (py + q)2 + pq(y- 1)2

Singletons Sib pairs
Genotypic Frequency Probability No. of Probability of Proportion of
risk ratio of disease of allele families transmitting heterozygous

allele A sharing required disease allele A parents
(Y) (P) (Y) (N) P(tr-A) (Hot) (Hot)
4.0 0.01 0.520 4260 0.800 0.048 1098 0.112 235

0.10 0.597 185 0.800 0.346 150 0.537 48
0.50 0.576 297 0;800 0.500 103 0.424 61
0.80 0.529 2013 0.800 0.235 222 0.163 161

2.0 0.01 0.502 296,710 0.667 0.029 5823 0.043 1970
0.10 0.518 5382 0.667 0.245 695 0.323 264
0.50 0.526 2498 0.667 0.500 340 0.474 180
0.80 0.512 11,917 0.667 0.267 640 0.217 394

1.5 0.01 0.501 4,62080 0.600 0.025 19,320 0.031 7776
0.10 0.505 67,816 0.600 0.197 2218 0.253 941
0.50 0.510 17,997 0.600 0.500 949 0.490 484
0.80 0.505 67,816 0.600 0.286 1663 0.253 941

Comparison of linkage and association studies. Number of families needed for identification of a
disease gene.
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  loci	
  

•  Alleles	
  at	
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  loci	
  are	
  independent	
  if	
  ...	
  
–  these	
  two	
  loci	
  locate	
  on	
  different	
  chromosomes	
  because	
  of	
  Mendel’s	
  law	
  of	
  

segrega$on	
  
–  these	
  two	
  loci	
  locate	
  on	
  the	
  same	
  chromosome,	
  but	
  their	
  distance	
  is	
  long	
  

enough	
  to	
  become	
  independent	
  because	
  of	
  repe$$ve	
  meio$c	
  recombina$on	
  

•  Otherwise	
  they	
  are	
  associated,	
  in	
  other	
  words,	
  in	
  linkage	
  disequilibrium	
  
(LD).	
  If	
  locus	
  1	
  and	
  2	
  are	
  in	
  LD,	
  and	
  locus	
  1	
  is	
  the	
  causa$ve	
  locus,	
  then	
  
locus	
  2	
  would	
  also	
  show	
  associa$on.	
  

Chromosome	
 1	
 2	
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•  LD	
  is	
  defined	
  as	
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combina$ons	
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  variants”	
  

B	
 b	


A	
 0.04	
 0.06	


a	
 0.36	
 0.54	


Random	
  sharing	
 Non-­‐random	
  sharing	


B	
 b	


A	
 0.00	
 0.10	


a	
 0.40	
 0.50	


When	
  fA	
  =	
  0.1	
  and	
  fB	
  =	
  0.4	


fAB = fAfB fAB 6= fAfB

DAB = fAB � fAfB

r2 =
D2

fAfafBfb
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No	
  need	
  to	
  genotype	
  all	
  the	
  
variants	
  in	
  a	
  region	
  ...	
  it	
  is	
  
enough	
  to	
  select	
  some	
  SNPs	
  
which	
  are	
  in	
  LD	
  with	
  other	
  
variants.	
  
	
  
In	
  general,	
  a	
  SNP	
  set	
  which	
  have	
  
r2	
  value	
  above	
  0.8	
  with	
  the	
  
other	
  SNPs	
  is	
  called	
  “tagSNPs”.	
  
	
  
Simple	
  sta$s$cal	
  gene$cs	
  
calcula$on	
  can	
  show	
  that	
  N/r2	
  
sample	
  size	
  is	
  needed	
  to	
  achieve	
  
the	
  same	
  power	
  to	
  detect	
  
associa$on	
  with	
  the	
  “tagSNPs”.	
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~	
  2,500,000	
  SNPs	
  
discovered	
  by	
  HapMap2	


~	
  300,000	
  tagSNPs	
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  in	
  Caucasian	


~	
  500,000	
  tagSNPs	
  
represen$ng	
  SNPs	
  	
  
in	
  Caucasian	
  +	
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~	
  1,000,000	
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  SNPs	
  in	
  	
  

Caucasian	
  +	
  Asian	
  +	
  African	


INTRODUCTION

Illumina’s Sentrix HumanHap300

Genotyping BeadChip (Figure 1) uses

the powerful Infinium™ II Assay to

interrogate over 317,000 single

nucleotide polymorphism (SNP) loci

efficiently and accurately on a single

BeadChip. The Infinium II Assay

uses a single-tube, whole-genome

amplification method that does not

require PCR1,2 and enables intelligent

SNP selection utilizing tagSNPs.

TagSNPs are loci that can serve as

proxies for many other SNPs. The

use of tagSNPs greatly improves the

power of association studies, as the

same information and power from a

larger number of SNPs can be gath-

ered from genotyping only a subset

of loci. TagSNPs on the Human-

Hap300 BeadChip were selected from

the recently completed Phase I

International HapMap Project3

(www.hapmap.org). The Phase I

HapMap dataset contains over 1 mil-

lion common SNPs, with a minor

allele frequency (MAF) ≥ 0.05 in each

population studied (Caucasian [CEU],

Han Chinese/Japanese [CHB+JPT],

and Yoruba [YRI])4. To capture this

variation, Illumina scientists used

an algorithm for the linkage disequi-

librium (LD) statistic 'r2' to select

tagSNPs5. A threshold of r2 = 0.8 was

used for SNPs within 10kb of genes

or evolutionarily conserved regions,

and r2 = 0.7 for all other regions. 

In addition, approximately 7,300

non-synonymous SNPs (nsSNPs) and

a higher density of tagSNPs in the

Major Histocompatibility Complex

(MHC) region were selected. Because

tagSNP content has been employed

on the HumanHap300 Beadchip, sci-

entists can achieve more statistical

power and genomic coverage, using

fewer SNPs and statistical tests,

compared to other strategies using

larger numbers of randomly chosen

SNPs4,5. 

TAG SNP CONTENT PROVIDES 
COMPREHENSIVE GENOMIC 
COVERAGE

The HumanHap300 BeadChip dis-

plays high genomic coverage as

measured by Phase I+II HapMap

genotype data (Figure 2). Eighty per-

cent of all Phase I+II loci (MAF ≥ 0.05)

are covered by at least one SNP on

the HumanHap300 BeadChip content

(for the CEU population). SNP assays

on the HumanHap300 BeadChip

incorporate the majority of variation

in regions of the genome exhibiting

higher LD based on the Phase I+II

HapMap data6.

Although assays on the Human

Hap300 BeadChip were chosen using

tagSNPs, SNPs are evenly spaced

across the genome to ensure com-

prehensive coverage. On average,

there is 1 SNP every 9 kb across the

genome (median spacing = 5kb). The

average 90th percentile gap on the

HumanHap300 BeadChip is 19kb. 

making sense out of life

Illumina® SNP Genotyping

Illumina’s Sentrix HumanHap300 Genotyping BeadChip delivers high-quality data and

enables whole-genome genotyping of over 317,000 tagSNP markers derived from the

International HapMap Project.

HIGHLIGHTS OF THE SENTRIX®

HUMANHAP300 BEADCHIP

• High-Quality Data

InfiniumTM II assay provides high

reproducibility and call rates

• Intelligent SNP Selection 

genome-wide coverage using 

> 317,000 tag SNPs chosen from

the International HapMap Project

• Simple Workflow 

PCR-less protocol using a 

single BeadChip for each sample

Sentrix
®

HumanHap300 

Genotyping BeadChip

FIGURE 1: SENTRIX® HUMANHAP300

GENOTYPING BEADCHIP

The Sentrix HumanHap300

Genotyping BeadChip, based on

tagSNPs, interrogates > 317,000 

SNPs while boosting genotyping

study statistical power.

ILLUMINA® DNA ANALYSIS

Infinium® DNA Analysis BeadChips
The Illumina DNA Analysis product line coupled with the Infinium Assay provide powerful tools to  
accelerate the discovery of disease-related genetic regions in whole-genome association and DNA copy 
number studies. 

INTRODUCTION

HIGHLIGHTS OF INFINIUM ASSAY 
BEADCHIPS

• High-Quality Data: Infinium Assay 
provides high reproducibility and 
call rates 

• Intelligent SNP Selection: Genome-
wide coverage of all populations 
using tag SNPs chosen from the 
International HapMap Project  

• Simple Workflow: Single-tube 
sample preparation without PCR  
or ligation steps

 
 FIGURE 1: INFINIUM BEADCHIPS

Infinium Assay BeadChips enable interrogation of ~317,000 to over one million SNPs and offer  
comprehensive coverage of CNV regions. Shown above, from left to right, are the HumanHap300-Duo, 
HumanHap550-Duo, and Human1M BeadChips.  

ILLUMINA® DNA ANALYSIS

Infinium® DNA Analysis BeadChips
The Illumina DNA Analysis product line coupled with the Infinium Assay provide powerful tools to  
accelerate the discovery of disease-related genetic regions in whole-genome association and DNA copy 
number studies. 

INTRODUCTION

HIGHLIGHTS OF INFINIUM ASSAY 
BEADCHIPS

• High-Quality Data: Infinium Assay 
provides high reproducibility and 
call rates 

• Intelligent SNP Selection: Genome-
wide coverage of all populations 
using tag SNPs chosen from the 
International HapMap Project  

• Simple Workflow: Single-tube 
sample preparation without PCR  
or ligation steps

 
 FIGURE 1: INFINIUM BEADCHIPS

Infinium Assay BeadChips enable interrogation of ~317,000 to over one million SNPs and offer  
comprehensive coverage of CNV regions. Shown above, from left to right, are the HumanHap300-Duo, 
HumanHap550-Duo, and Human1M BeadChips.  



Genome-­‐wide	
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  study	
  
(GWAS)	


300,000	
  ~	
  SNPs	
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  tagged	
  SNPs	
  	
  

from	
  HapMap	
  or	
  from	
  1000	
  genomes	
  project	
  	


Do	
  associa$on	
  test	
  at	
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  SNP	
  site	
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  control	
  of	
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  genotypes	


Get	
  results	
  !	


Chi-­‐squared	
  test	
  
Regression	
  test	




Q-­‐Q	
  plot	
  for	
  quality	
  control	


•  GWAS	
  uses	
  hundreds	
  of	
  thousands	
  of	
  SNP	
  
results,	
  and	
  the	
  quality	
  must	
  be	
  assured	
  by	
  
Quality	
  Control	
  processes.	
  And	
  this	
  can	
  be	
  
evaluated	
  by	
  Q-­‐Q	
  plot.	
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  stra,ficaiton	


•  Popula$on	
  stra$fica$on	
  can	
  cause	
  false	
  
posi$ves	
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The effects of human population structure on large
genetic association studies
Jonathan Marchini1, Lon R Cardon2, Michael S Phillips3 & Peter Donnelly1
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Large-scale association studies hold substantial promise for
unraveling the genetic basis of common human diseases. A well-
known problem with such studies is the presence of undetected
population structure, which can lead to both false positive results
and failures to detect genuine associations. Here we examine
∼15,000 genome-wide single-nucleotide polymorphisms typed in
three population groups to assess the consequences of population
structure on the coming generation of association studies. The
consequences of population structure on association outcomes
increase markedly with sample size. For the size of study needed
to detect typical genetic effects in common diseases, even the
modest levels of population structure within population groups
cannot safely be ignored. We also examine one method for
correcting for population structure (Genomic Control). Although
it often performs well, it may not correct for structure if too few
loci are used and may overcorrect in other settings, leading to
substantial loss of power. The results of our analysis can guide the
design of large-scale association studies.

Recent advances in genotyping technologies and increases in genetic
marker availability have paved the way for association studies on
genomic scales1. A potential problem for every population-based asso-
ciation study is the presence of undetected population structure that
can mimic the signal of association and lead to more false positives or
to missed real effects (Fig. 1). These concerns have influenced the
design, interpretation and funding of association studies during the

past decade2. Still, levels of population structure in many ethnic
groups are typically small, and despite concerns3,4, there is an increas-
ing sense5,6 that the problem is not serious if association studies avoid
gross levels of population structure.

Upcoming association studies will genotype many markers and
evaluate many individuals, owing to the realization that case-control
studies powered to detect realistic effect sizes will typically require
thousands of individuals7,8. This concern raises two general questions:
(i) how much underlying structure is there in various human popula-
tions and when might this pose problems for large-scale association
studies, and (ii) how accurate and efficient are available methods for
correcting for population structure in case-control studies?

Using genome-wide single-nucleotide polymorphisms (SNPs) in
multiple populations (European Americans, African Americans and
Asians of known Japanese or Chinese ancestry), we quantified the
extent of population structure within and between the populations
and then examined the consequences of population structure for
association studies.

Figure 1  The effects of population structure at a SNP locus. If the study
population consists of subpopulations that differ genetically, and if disease
prevalence also differs across these subpopulations, then the proportions of
cases and controls sampled from each subpopulation will tend to differ, as
will allele or genotype frequencies between cases and controls at any locus
at which the subpopulations differ. The figure shows an example of this
scenario with two populations in which the cases have an excess of
individuals from population 2 and population 2 has a lower frequency of
allele A than population 1. In this example, the structure mimics the signal
of association in that there is a significant difference in allele and genotype
frequencies between cases and controls.
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Principal	
  component	
  analysis	


LCT	


HLA	


(Heath,	
  SC	
  et	
  al.	
  EJHG	
  2008;	
  16:	
  1413.)	




Principal	
  component	
  analysis	


Common	
  inversion	
  
polymorphism	
  in	
  chromosome	
  
8	
  (Hevra	
  R,	
  de	
  la	
  Chapelle	
  A.	
  
AJHG	
  1976;	
  28:	
  208.)	




Mixed	
  Linear	
  Model	
  Associa,on	


•  Relatedness	
  between	
  individuals	
  in	
  case	
  or	
  in	
  control	
  could	
  cause	
  
spurious	
  associa$on	
  since	
  it	
  can	
  increase	
  /	
  decrease	
  allele	
  
frequency	
  irrespec$ve	
  of	
  disease	
  status.	
  	
  

•  Typically,	
  sample	
  filtra$on	
  is	
  performed	
  to	
  remove	
  1st	
  and	
  2nd	
  
degree	
  relatedness,	
  and	
  possibly	
  more.	
  

•  Mixed	
  Linear	
  Model	
  Associa$on	
  (MLMA)	
  is	
  a	
  solu$on	
  to	
  adjust	
  any	
  
levels	
  of	
  relatedness	
  

Y = X� + u+ ✏

Var(u) = �2
gK

K:	
  matrix	
  of	
  pairwise	
  gene$c	
  similarity	




GWAS	
  	
  for	
  
Age-­‐related	
  Macular	
  Degenera,on	
  (AMD)	


(Leveillard	
  T,	
  Kamatani	
  Y,	
  Lathrop	
  M	
  et	
  al.	
  Unpublished	
  data)	


European	
  Cases	
  ~	
  1,000:	
  European	
  Controls	
  ~	
  4,000	
  -­‐>	
  2	
  GW	
  signals	
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Supplementary Figure 1. Results of GWAS.

(a)(c) Results of the principal component analysis (PCA) using
Hapmap four populations (CEU, YRI, JPT, CHB) as the references (a)
and using Asian population (JPT, CHB) as the references (c). (b)
Quantile-quantile (Q-Q) plots with the age, and sex-adjusted P values
using all samples (lambda = 1.057) and (d) only using the samples in
the main (Hondo) cluster (lambda = 1.076). (e)(f) Results of the PCA
only using GWAS cases and controls. The PCA plots for the first and
second eigenvector (e), and the first and third eigenvector (f). (g)
Manhattan plot at GWAS. Each P values were calculated by age, and
sex-adjusted logistic regression model. SNPs in chromosome 1 (CFH)
and chromosome 10 (ARMS2) showed highly significant association
with exudative AMD. The black line indicates genome-wide significant
level of P = 5.0 × 10-8.
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(Arakawa	
  S	
  et	
  al.	
  Nat	
  Genet	
  2011;43:1001-­‐5)	


Japanese	
  Cases	
  ~	
  1,500:	
  Japanese	
  Controls	
  ~	
  20,000	
  -­‐>	
  2	
  GW	
  signals	


GWAS	
  yields	
  disease	
  suscep$ble	
  loci	
  with	
  confident	
  associa$ons	
  and	
  with	
  robustness.	




Imputa,on	


Observed	
  data	
  at	
  3	
  gene$c	
  loci	
 T/C,	
  A/A,	
  T/C	


...T...AC.	


...C...AT.	

Construct	
  haplotypes	




Imputa,on	


Observed	
  data	
  at	
  3	
  gene$c	
  loci	
 T/C,	
  A/A,	
  T/C	


TCCTCGTACG	

TGTCCGGATC	


Impute	
  missing	
  genotypes	


TGTCCGGATC	


TCCTCGTACG	


TGTTTGGGTC	


CGCTCATACC	


•  The	
  reference	
  template	
  is	
  typically	
  HapMap	
  panel	
  or	
  1000	
  genomes	
  panel.	
  
•  Observed	
  loci	
  are	
  typically	
  from	
  SNP	
  arrays,	
  of	
  which	
  loci	
  are	
  “tagSNPs”	
  from	
  

HapMap	
  or	
  from	
  1000	
  genomes	
  results.	
  

Reference	
  haplotypes	




Imputa,on	
  (Marchini’s	
  model)	


P (Gi|H, ✓, ⇢) =
X

z

P (Gi|Z, ✓)P (Z|H, ⇢)

Gi	
  :	
  vector	
  of	
  genotypes	
  of	
  individual	
  i	
  
H:	
  popula$on	
  haplotypes	
  
θ:	
  other	
  parameters	
  
ρ:	
  recombina$on	
  map	
  across	
  the	
  genome	
  
Z:	
  2	
  copies	
  of	
  haplotypes	
  from	
  popula$on,	
  which	
  form	
  individual	
  genotypes	




Imputa,on	
  (Marchini’s	
  model)	


P (Gi|H, ✓, ⇢) =
X

z

P (Gi|Z, ✓)P (Z|H, ⇢)

Z1(1)	
  
Z1(2)	
  

Zi(1)	
  
Zi(2)	
  

Zi+1(1)	
  
Zi+1(2)	
  

ZL(1)	
  
ZL(2)	
  

G1	
   Gi	
   Gi+1	
   GL	
  

Transi$on	
  probability	
  :	
  governed	
  by	
  recombina$on	
  rate	
  (ρ)	


Emission	
  probability	
  :	
  governed	
  by	
  muta$on	
  rate	




Imputa,on	
  (Marchini’s	
  model)	


P (Gi|H, ✓, ⇢) =
X

z

P (Gi|Z, ✓)P (Z|H, ⇢)

Emission	
  probability	


Gil

0 1 2

0 (1 − λ)2 2λ(1 − λ) λ2

H
Z

(1)
il l

+ H
Z

(2)
il l

1 λ(1 − λ) λ2 + (1 − λ)2 λ(1 − λ)

2 λ2 2λ(1 − λ) (1 − λ)2

Table 1: The probability Pr((H
Z

(1)
il l

+ H
Z

(2)
il l

) → Gil) of mutating from the

genotype derived by summing the alleles defined by the two copying states

(H
Z

(1)
il l

+ H
Z

(2)
il l

) to the observed genotype Gil.

treated as a set of known sites in the setH and can be conditioned upon to simulate

untyped variants in the set of data G. Frequentist or Bayesian test statistics can

then be calculated by averaging over the sample in the appropriate way.

Suppose we wish to simulate a SNP at an unobserved site; let this site be the

jth site of the haplotypes in the set H . We assume that Hij is missing for all

i ∈ {1, . . . , N}. To simulate this missing data we model the joint distribution of

the complete set of haplotypesH . That is,

Pr(H) = Pr(H1)Pr(H2|H1) . . . P r(HN |H1, . . . , HN−1). (6)

Each of the conditional distributions Pr(Hi|·) is approximated by the Hidden

Markov model described in [2] to give

Pr(H) ≈ π(H1)π(H2|H1) . . .π(HN |H1, . . . , HN−1). (7)

This is known as a “product of approximate conditionals” (PAC) model. Given an

ordering of the haplotypesH(1), . . . , H(N) the missing allelesH(1)j , . . . , H(N)j are

simulated sequentially using these approximate conditional distributions. We use

this model to make the following approximation of the probability that H(i)j = k,

where k ∈ {0, 1}:

Pr(H(i)j = k|H(i) \ H(i)j ; H(1), . . . , H(i−1)) ∝ Pr(H(i), H(i)j = k|H(1), . . . , H(i−1))(8)

≈ π(H(i), H(i)j = k|H(1), . . . , H(i−1)). (9)

3

The transition probabilities of the chain from site l to l + 1 are given by

Pr({Z(1)
il , Z

(2)
il } → {Z(1)

i(l+1)
, Z

(2)
i(l+1)

}|H) =
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>

>

>

>

>
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<
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−
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”2
Z

(1)
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(1)
i(l+1), Z

(2)
il ̸= Z

(2)
i(l+1)

(3)

where ρl = 4Nerl and rl is the per generation genetic distance between sites l and

l + 1. We use the estimate of Ne = 11, 418 [1]. Overall, the prior distribution on

the hidden states can be written as

Pr(Z(1)
i , Z(2)

i |H) = Pr(Z(1)
i1 , Z(2)

i1 |H)
L−1
∏

l=1

Pr({Z(1)
il , Z(2)

il } → {Z(1)
i(l+1), Z

(2)
i(l+1)}|H)

(4)

The term Pr(Gi|Z
(1)
i , Z(2)

i , H) models how the observed genotypes will be

close to but not exactly the same as the haplotypes being copied. This term mimics

the effects of mutation in the approximation to the population genetics model. We

assume that the mutations are independent across sites and that the two alleles on

the haplotype being copied (independently) mutate to their complementary alleles

with probability λ = θ
2(θ+N) .

Pr(Gi|Z
(1)
i , Z(2)

i , H) =
L

∏

l=1

Pr(Gil|Z
(1)
il , Z(2)

il , H) =
L

∏

l=1

Pr((H
Z

(1)
il l

+H
Z

(2)
il l

) → Gil)

(5)

where Pr((H
Z

(1)
il l

+ H
Z

(2)
il l

) → Gil) is given by Table 1. Following [2], we use

θ =
(

∑N−1
i=1

1
i

)−1

.

This model can also be used to infer haplotypes across a region of interest and

to deal with uncertainty in the genotype data (to be described elsewhere).

Imputation of completely missing SNPs

To carry out a test of association at a SNP which is completely unobserved in both

the set of haplotypesH and the set of sampled data G we simulateM realisations

of this SNP in the N observed haplotypes in set H . This sample of SNPs is then

2

Transi$on	
  probability	
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Identifying the full spectrum of allelic variation that contributes 
to disease in each locus will require sequencing of AMD cases and 
controls. To conduct an initial evaluation of the evidence for multiple 
AMD risk alleles in the 19 loci described here, we repeated genome-
wide association analyses, conditioning on the risk alleles listed in 
Table 2. We then examined each of the 19 implicated loci for variants 
with independent association (at P < 0.0002, corresponding to an esti-
mate of ~250 independent variants per locus). This analysis resulted 
in the identification of the previously well-documented independently 
associated variants near CFH and C2-CFB8,10,31,32 and of additional 
independent signals near C3, CETP, LIPC, FRK-COL10A1, IER3-
DDR1 and RAD51B (Supplementary Table 6). In four of these loci, 
the independently associated variants mapped very close to (within 
60 kb of) the original signal. This shows that each locus can harbor 
multiple susceptibility alleles, encouraging searches for rare variants 
that elucidate disease-related gene function in these regions33,34.

To prioritize our search for likely causal variants, we examined each 
locus in detail (see LocusZoom35 plots in Supplementary Fig. 3) and 
investigated whether risk alleles for AMD were associated with changes 
in protein sequence, copy number variation or insertion-deletion  
(indel) polymorphisms. One quarter of associated variants altered 
protein sequence, either directly (N = 2) or through LD (r2 > 0.6;  
N = 3) with a nearby nonsynonymous variant (Supplementary 
Table 7). Some coding variants implicate well-studied genes (ARMS2, 
C3 and APOE), whereas others helped prioritize nearby genes for 
further study. On chromosome 4q25, index SNP rs4698775 is in 
strong LD (r2 = 0.88) with a potentially protein-damaging variant in 
CCDC109B36, encoding a coiled-coil domain–containing protein that 
might be involved in the regulation of gene expression. On chromo-
some 6q22, index SNP rs3812111 is a perfect proxy for a coding vari-
ant in COL10A1, encoding a collagen protein that could be important 
in maintaining the structure and function of 
the extracellular matrix. Notably, rs1061170 
(encoding a p.His402Tyr alteration in CFH; 
NP_000177.2) was not in disequilibrium 
with rs10737680, the most strongly associ-
ated SNP in the CFH region but, instead, was 
tagged by a secondary, weaker association 
signal (Supplementary Tables 6 and 7). This 
is consistent with previous haplotype analyses 
of the locus10,31,32,34,37.

We used publicly available data38,39 to 
determine whether any of our index SNPs 
might be proxies for copy number variants or 
indels, which are hard to directly interrogate 
with genotyping arrays. This analysis iden-
tified a single strong association (r2 = 0.99) 
between rs10490924, a coding variant in the 
ARMS2 gene that is the peak of association 
at 10q26, and a 3  UTR indel polymorphism 
associated with ARMS2 mRNA instability40.  

Because index SNP rs10490924 is also in 
strong disequilibrium (r2 = 0.90) with a 
nearby SNP, rs11200638, which regulates 
HTRA1 (ref. 41), our data do not directly 
answer whether HTRA1 or ARMS2 is the 
causal gene in this locus. Although a common 
deletion of the CFHR1 and CFHR3 genes has 
been associated with AMD42,43, there was 
only modest signal in this study, potentially 
due to LD with our most significantly asso-

ciated variants in the locus (r2 = 0.31 between rs10737680 and 1000 
Genomes Project MERGED_DEL_2_6731)34.

Using RNA sequencing44, we examined the mRNA levels of 85 
genes within 100 kb of our index SNPs in postmortem human retina 
(Supplementary Table 8). Of 19 independent risk-associated loci,  
3 had no genes with expressed transcripts in retina tissue from either 
young or elderly individuals. Two genes showed differential expres-
sion in the postmortem retina of young (ages 17–35) and elderly (ages 
75 and 77) individuals: CFH (P = 0.009) and VEGFA (P = 0.003), 
both with higher expression in the older individuals. Using previously 
published data45, we also examined the expression of associated genes 
in fetal and adult retinal pigment epithelium (RPE). This analysis 
showed higher C3 expression in adult RPE compared to fetal RPE  
(P = 0.0008). In addition to C3 and CFH, all the complement genes 
with detectable expression in the retina or RPE experiments showed 
higher expression levels in tissue from the older individuals.

To identify biological relationships among our genetic associa-
tion signals, we catalogued the genes within 100 kb of the variants in 
each association peak (r2 > 0.8 with the index SNP listed in Table 1). 
Ingenuity Pathway Analysis (IPA, Ingenuity Systems) highlighted 
several biological pathways, particularly the complement system and 
atherosclerotic signaling, that were enriched in the resulting set of 90 
genes (Table 3 and Supplementary Table 9). To account for features 
of GWAS (such as the different number of SNPs representing each 
gene), we carried out two additional analyses. First, we repeated our 
analysis for 50 sets of 19 control loci drawn from the National Human 
Genome Research Institute (NHGRI) GWAS catalog46. In these 50 
control sets, Ingenuity enrichment P values for the complement sys-
tem and for atherosclerosis signaling genes were exceeded 16% and 
32% of the time, respectively (although these 2 specific pathways 
were never implicated in a control data set). Second, we repeated our 

Table 1 Summary of samples used in genome-wide discovery and targeted follow-up 
analyses

Analysis
Contributing  
study groups Ncases Female (%)

Neovascular  
disease (%) Ncontrols Female (%)

Genome-wide discovery 15 7,650 53.9 59.2 51,844 45.2
Targeted follow-up 18 9,531 56.3 57.8 8,230 53.8
Overall 33 17,181 55.2 58.4 60,074 46.3

Additional details, including a breakdown of the numbers of cases and controls in individual samples, are provided in 
Supplementary Table 1. Ncases includes only cases with geographic atrophy, choroidal neovascularization or both.
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Cases	
  ~	
  1,000:	
  Controls	
  ~	
  4,000	
  >	
  2	
  GW	
  signals	


Cases	
  ~	
  17,000:	
  Controls	
  ~	
  60,000	
  >	
  19	
  GW	
  signals	


(The	
  AMD	
  Gene	
  Consor$um.	
  Nat	
  Genet	
  2013;45:433-­‐9)	


Genome-­‐wide	
  meta-­‐analysis	
  can	
  increase	
  sta$s$cal	
  power,	
  and	
  enables	
  us	
  to	
  iden$fy	
  
tens	
  of	
  suscep$ble	
  loci	
  for	
  a	
  disease	
  trait	
  or	
  a	
  quan$ta$ve	
  trait.	
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Through systematic bidirectional sequencing of the 12 exons of
PCSK9 in 22 probands with ADH, we identified a second mutation
(890T→C, resulting in the amino-acid substitution F216L) in the
proband of family HC60 (Fig. 2c), who died from myocardial infarc-
tion at 49 years of age (Fig. 2d and Supplementary Fig. 2 online).
This mutation segregated with the ADH phenotype in the family and
was not found in 200 control chromosomes. No large rearrangement
was found in any of the probands by Southern blotting (data not
shown). Thus, mutations in PCSK9 have been found in 12.5% of the
families with ADH that we tested. We also identified 25 polymor-
phisms present in different probands and on control chromosomes,

none of which gives rise to new donor or acceptor splice sites
(Supplementary Table 2 online).

NARC-1 is a novel proprotein convertase3. It is synthesized as a sol-
uble zymogen that undergoes autocatalytic intramolecular processing
in the endoplasmic reticulum at the primary cleavage site YVVVL↓−
KEE85, indicative of the enzymatic specificity3 of NARC-1.
Prosegment cleavage is necessary for NARC-1 to exit from the endo-
plasmic reticulum. The S127R mutation resides between the primary
and putative secondary zymogen processing sites of the NARC-1
propeptide, and F216L is located close to the active site (which is at
His226). Notably, the S127R mutation creates an RGD site that may

Exon 2 mutation
control

625T→A 
(S127R)

Individual HC 92-II-7
N

0

1

2

3

4

5

6

0 cMD
1S197

D
1S231

D
1S417

D
1S200

D
1S2742

D
1S2890

PCSK9

1 2

21

1

3

2 3

I

II

III

3
2
4
3

3
4
3
8

2
1
5
3
8

4
3
5
4
8

D1S197
D1S231
D1S417
D1S2742
D1S2890

3
3
2
4
8

5
3
5
4
2

2
3
4
3
8

4
3
5
4
8

3
4
3
8

1
5
3
8

D1S197
D1S231
D1S417
D1S2742
D1S2890

49
4.41
3.56

40
2.01
1.21

28
1.63
0.73

5
2.20
1.54

3
2.36
1.72

Age
TC
LDL-C

Age
TC
LDL-C

control
Exon 4  mutation

Individual HC60-II-2

890T→C 
(F216L)

N

lo
d 

sc
or

e

2 4 6 8

a

b

c

d

– –

– –

Figure 2 Genetic analysis and mutation
detection in families HC92 and HC60.
(a) Results of LINKMAP analyses in
family HC92 indicating a maximum lod
score for D1S2742 at θ = 0. PCSK9
maps 1.2 Mb away from this marker.
(b) Mutation in family HC92. The
proband (HC92-II-7, indicated by an
arrow in Fig. 1) is heterozygous with
respect to the 625T→A substitution in
exon 2 (resulting in the amino-acid
substitution S127R). (c) Pedigree and
genetic analysis of family HC60. Age (in
years) at lipid measurement, total
cholesterol (TC) and low-density
lipoprotein cholesterol (LDL-C; in g/L;
untreated values for affected individuals)
are given. (d) Sequence analysis in family
HC60. The proband (HC60-II-2,
indicated by an arrow) is heterozygous
with respect to the 890T→C substitution
in exon 4, predicting the amino-acid
substitution F216L.

21 3 5 7 8 94 6 10 1211
III

3
1
4
1
3
3
1
9

6
4
7
3
2
4
7
9

6
6
3
3
3
5
4
9

6
4
3
3
2
3
6
5

3
3

1
2
3
4
9

6
4

3
2
3
6
5

D1S2722
D1S211
D1S197
D1S231
D1S417
D1S200
D1S2742
D1S2890

6
4
3
3
2
3
6
5

3
2

3
3
2
7
7

4
7

3
3
6
2
4

6
4
7
3
2
4
7
9

6
6
3
3
3
5
4
9

6
4
7
3
2
4
7
9

6
4
7
3
2
4
7
9

6
4
3
3
2
3
6
5

6
4

3
2
3
6
5

5
1

3
3
6
7
9

5
1

4
2
6
1
6

6
1

3
4
3
4
3

6
4

3
2
3
6
5

5
1

3
3
6
7
9

1
2
6
3
3
3
7
9

6
4
6
2
2
6
4
6

6
4
3
3
2
3
6
9

6
4
4
2
1
3
4
8

6
4
7
3
2
4
7
9

6
4
3
3
2
3
6
5

2
5

2
3
2
7
2

6
4

4
3
3
4
1

3
1
4
1
3
3
1
9

6
6
3
3
2
3
6
5

D1S2722
D1S211
D1S197
D1S231
D1S417
D1S200
D1S2742
D1S2890

1 2

2 3 4 6 71 5

I

II

42
3.44
2.76

51
1.59
0.78

46
4.00

48
2.22
1.32

49
3.34
2.63

42
2.22
1.37

42
1.75
0.90

40
3.34
2.64

36
4.66
3.89

40
3.29
2.56

38
1.89
1.00

39
3.24

1 2 3 4 5 6 7 8 9 10 11 12 13 14
IV

1
2
6
3
3
3
7
9

6
4
3
3
1
3
4
8

6

6
2
2
6
4
6

6

3
3
1
3
4
8

6
4
6
2
2
6
4
6

6
4
3
3
2
3
6
9

1
2
6
3
3
3
7
9

6
4
3
3
2
3
6
9

6
4

4
3
3
4
1

3
1

1
3
3
1
9

2
5

2
3
2
7
2

6
6

3
2
3
6
5

6
4

4
3
3
4
1

3
1

1
3
3
1
9

2
5

2
3
2
7
2

6
6

3
2
3
6
5

3
2

3
3
2
7
7

6
4

3
2
4
7
9

3
2

3
3
2
7
7

6
4

3
2
4
7
9

4
7

3
3
6
2
4

6
6

3
2
4
7
9

5
1

4
2
6
1
6

5
1

3
3
6
7
9

5
1

4
2
6
1
6

5
1

3
3
6
7
9

6
1

3
4
3
4
3

5
1

3
3
6
7
9

D1S2722
D1S211
D1S197
D1S231
D1S417
D1S200
D1S2742
D1S2890

19
1.35
0.48

17
1.74
0.81

15
2.05
1.44

14
2.79
1.91

23
1.68
0.99

21
3.54
2.78

17
1.22
0.58

14
3.22
2.45

15
1.75
1.07

12
1.68
1.04

11
2.17
1.49

6
1.63
0.94

9
1.91
0.94

11
1.34
0.62

52
3.50

59
5.21
4.20

Age
TC

LDL-C

Age
TC

LDL-C

Age
TC

LDL-C

_

_

_ _

_ _ _ _ _ _ _ _ _ _

_ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
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of the stage 1 studies were low, at 1.03 for LDL cholesterol, 1.04
for HDL cholesterol and 1.03 for triglycerides, suggesting little
residual confounding caused by population stratification or un-
modeled relatedness.

In the meta-analysis of seven stage 1 studies, 25 unique loci
harbored variants associated with LDL cholesterol, HDL cholesterol
or triglycerides at a significance level of P o 5 ! 10"8 (corresponding
to P o 0.05 after adjusting for B1 million independent tests, the
estimated multiple testing burden in GWAS of individuals of Eur-
opean ancestry10). To evaluate these and other less significantly
associated SNPs from stage 1, we genotyped SNPs in a maximum of
20,623 individuals from five stage 2 studies: Malmö Diet and Cancer
Study (MDC)11, FINRISK97 (ref. 12), FUSION stage 2 (ref. 13),
Metabolic Syndrome in Men (METSIM) and International Study of
Infarct Survival (ISIS)14 (Table 1 and Supplementary Fig. 1). These
SNPs were selected to focus on loci that had not previously been
associated with our lipoprotein phenotypes (see Methods).

In the analysis including stage 1 and stage 2 studies, SNPs at 30 loci
were convincingly associated (P o 5 ! 10"8) with LDL cholesterol,
HDL cholesterol or triglycerides, including 11 loci that reached
genome-wide significance for the first time (Table 2 and Fig. 1).
Each of the loci reached P o 1 ! 10"5 in stage 1 and P o 0.05 in
stage 2 (Supplementary Table 2 online). The 11 loci definitively
identified in this study included genes whose function in humans has
previously been studied (ABCG8 (ref. 15); ANGPTL4 (ref. 16);
FADS1-FADS2-FADS3 (ref. 17); HNF4A18; LCAT19; PLTP20; and
HNF1A21) and genes whose function in humans is poorly

understood (TTC39B, TIMD4-HAVCR1,
XKR6, AMAC1L2 and MAFB; Fig. 2).

We confirmed these 30 association signals
by carrying out a uniform analysis strategy
for all studies and then applying an inverse-
variance weighted meta-analysis (Supple-
mentary Table 3 online). This analysis also
allowed us to test for heterogeneity in effect
sizes across studies. No significant evidence
for heterogeneity was detected for any of the
newly identified loci (Supplementary Tables
4–6 online).

Lipid-associated SNPs and gene
expression in human liver
The associated SNP at 1 of the 11 new loci
was a nonsynonymous coding variant,
HNF4A rs1800961 (T130I, 3% frequency),
and the remaining 10 new associated SNPs
were noncoding. We therefore explored
whether lipid-associated variants might influ-
ence gene expression as cis-acting regulators
of nearby genes. We genotyped DNA and
profiled RNA expression of 439,000 tran-
scripts in 957 human liver tissue samples22.
We conducted expression quantitative trait
locus analyses relating the SNPs in Table 2
with liver transcripts located within 500 kb to
either side of the associated SNP (Table 3).
Together, the lipoprotein association data and
the expression quantitative trait locus ana-
lyses highlighted several biological insights.

For example, among five genes at the 20q13
locus for HDL cholesterol and triglycerides,

expression of PLTP was associated with rs7679 (P ¼ 6 ! 10"17;
Table 3). The rs7679 allele associated with higher PLTP transcript levels
was also associated with higher HDL cholesterol and lower triglycerides
(Tables 2 and 3). This is consistent with prior work in mice showing
that Pltp overexpression leads to higher HDL cholesterol23, whereas
targeted deletion leads to lower HDL cholesterol24. Consistency
between the direction of effect on transcript levels and lipoprotein
concentration was also evident at the LIPC locus. In agreement with
earlier studies in which lower hepatic lipase activity and higher HDL
cholesterol were associated with LIPC promoter variants25, the minor T
allele at LIPC rs10468017 was associated with lower LIPC expression in
our study (P ¼ 2 ! 10"18; Table 2) and increased HDL cholesterol
(P ¼ 8 ! 10"23; Table 3).

Another strong signal mapped to a cluster of three fatty acid
desaturase genes (FADS1-FADS2-FADS3) on 11q12 (Fig. 2e). The
cluster showed association with both HDL cholesterol and triglycer-
ides (Table 2), and the expression quantitative trait locus data
suggested that the associated SNP modulates expression of FADS1
and FADS3 (Table 3). The allele associated with increased FADS1 and
FADS3 expression led to higher HDL cholesterol and lower triglycer-
ides. Fatty acid desaturases convert polyunsaturated fatty acids into
cell signaling metabolites, including arachidonic acid. SNPs at this
locus have been previously related to levels of arachidonic acid in
serum phospholipids and red blood cell plasma membranes17. In
addition, dietary omega-3 polyunsaturated fatty acids—a key sub-
strate for FADS1—are known to lower plasma triglycerides, possibly
by decreasing very-low-density lipoprotein secretion26.
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Figure 1 Summary of genome-wide association results for LDL cholesterol, HDL cholesterol and
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GWAS	
  confirmed	
  that	
  PCSK9	
  was	
  also	
  
associated	
  with	
  LDL	
  cholesterol	
  level	
  in	
  
general	
  popula$on	
  (Global	
  Lipids	
  Gene$cs	
  
Consor$um.	
  Nat	
  Genet	
  2013;	
  45:	
  1274,	
  
and	
  several	
  other	
  reports.)	


Func$onal	
  role	
  of	
  PCSK9	
  protein	
  was	
  revealed...	
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A bs tr ac t

Background
Proprotein convertase subtilisin/kexin 9 (PCSK9), one of the serine proteases, binds to 
low-density lipoprotein (LDL) receptors, leading to their accelerated degradation and 
to increased LDL cholesterol levels. We report three phase 1 studies of a monoclonal 
antibody to PCSK9 designated as REGN727/SAR236553 (REGN727).

Methods
In healthy volunteers, we performed two randomized, single ascending-dose studies 
of REGN727 administered either intravenously (40 subjects) or subcutaneously 
(32 subjects), as compared with placebo. These studies were followed by a random-
ized, placebo-controlled, multiple-dose trial in adults with heterozygous familial 
hypercholesterolemia who were receiving atorvastatin (21 subjects) and those with 
nonfamilial hypercholesterolemia who were receiving treatment with atorvastatin 
(30 subjects) (baseline LDL cholesterol, >100 mg per deciliter [2.6 mmol per liter]) 
or a modified diet alone (10 subjects) (baseline LDL cholesterol, >130 mg per deciliter 
[3.4 mmol per liter]). REGN727 doses of 50, 100, or 150 mg were administered 
subcutaneously on days 1, 29, and 43. The primary outcome for all studies was the 
occurrence of adverse events. The principal secondary outcome was the effect of 
REGN727 on the lipid profile.

Results
Among subjects receiving REGN727, there were no discontinuations because of ad-
verse events. REGN727 significantly lowered LDL cholesterol levels in all the studies. 
In the multiple-dose study, REGN727 doses of 50, 100, and 150 mg reduced mea-
sured LDL cholesterol levels in the combined atorvastatin-treated populations to 
77.5 mg per deciliter (2.00 mmol per liter), 61.3 mg per deciliter (1.59 mmol per liter), 
and 53.8 mg per deciliter (1.39 mmol per liter), for a difference in the change from 
baseline of −39.2, −53.7, and −61.0 percentage points, respectively, as compared with 
placebo (P<0.001 for all comparisons).

Conclusions
In three phase 1 trials, a monoclonal antibody to PCSK9 significantly reduced LDL 
cholesterol levels in healthy volunteers and in subjects with familial or nonfamilial hy-
percholesterolemia. (Funded by Regeneron Pharmaceuticals and Sanofi; ClinicalTrials 
.gov numbers, NCT01026597, NCT01074372, and NCT01161082.)
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And	
  a	
  new	
  drug	
  lowering	
  LDL	
  
cholesterol	
  is	
  going	
  to	
  be	
  approved	




Es,ma,on	
  of	
  heritability	
  
(GWAS)	


•  By	
  using	
  “genome-­‐wide	
  significant”	
  SNPs,	
  

	
  calculates	
  aggregate	
  contribu$on	
  of	
  significant	
  SNPs	
  
under	
  addi$ve	
  gene$c	
  model,	
  when	
  values	
  {0,1,2}	
  are	
  
given	
  to	
  each	
  biallelic	
  genotype	
  (for	
  example,	
  A/A,	
  A/a,	
  
and	
  a/a)	
  .βi	
  is	
  an	
  effect	
  size	
  at	
  locus	
  i.	
  
	
  
•  This	
  should	
  be	
  equal	
  to	
  “narrow-­‐sense	
  heritability”	
  

h2 =
X

i

2fi(1� fi)�
2
i



Es,ma,on	
  of	
  heritability	


•  Polygenic	
  model	


P = G+ E

G:	
  gene$c	
  effect	
  
E:	
  residuals	
  (supposed	
  to	
  be	
  environmental	
  effect)	
  
P:	
  phenotypic	
  value	


h2 =
VG

VP



Polygenic	
  model	


P = A+ E

P = A+D + E

P = A+D +AA+ E

P = A+D +AA+AD + E

P = A+D +AA+AD +AAA+ E



Polygenic	
  model	


•  Narrow-­‐sense	
  heritability	
  

	
  
•  Broad-­‐sense	
  heritability	


h2 =
VA

VP

H2 =
VG

VP
=

VA + VD + VAA + VAD + VAAA + · · ·
VP



Es,ma,on	
  of	
  heritability	
  
(twin	
  study)	


•  Covariance	
  of	
  twins	


Covdz =
1

2
VA + VC,dz

Monozygo$c	
  twins	
 Dizygo$c	
  twins	


Covmz = VA + VC,mz



Es,ma,on	
  of	
  heritability	
  
(twin	
  study)	


•  Covariance	
  of	
  twins	


Covdz =
1

2
VA + VC,dz

2(rmz � rdz) =
VA

VP
= h2

Covmz = VA + VC,mz



Es,ma,on	
  of	
  heritability	
  
(twin	
  study)	


•  Covariance	
  of	
  twins	
  under	
  the	
  existence	
  of	
  
dominance	
  and	
  epistasis	
  effects	
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Missing	
  heritability	


The	
  explained	
  variance	
  using	
  genome-­‐
wide	
  significant	
  loci	
  (red	
  bars)	
  are	
  much	
  
smaller	
  than	
  the	
  heritability	
  es$mates	
  
from	
  twin	
  studies,	
  which	
  are	
  expressed	
  
as	
  100%	
  in	
  the	
  right	
  plot.	




Polygenic	
  score	
  analysis	


odds ratio 5 0.82, 0.88 and 0.78) and was in linkage disequilibrium
with rs3130375 (r2 5 0.35 in HapMap). Across the region, 11 other
SNPs had P , 1027 at 27.1–27.3 Mb and 32.7 Mb (Supplementary
Table 5).

Our second approach was to evaluate whether common variants
have an important role en masse, directly testing the classic theory of
polygenic inheritance8, previously hypothesized to apply to schizo-
phrenia9. Although our GWAS analysis did not identify a large
number of strongly associated loci, there could still be potentially
thousands of very small individual effects that collectively account for
a substantial proportion of variation in risk. We summarized vari-
ation across nominally associated loci into quantitative scores, and
related the scores to disease state in independent samples10. Although
variants of small effect (for example, genotypic relative risk
(GRR) 5 1.05) are unlikely to achieve even nominally significant P
values, increasing proportions will be detected at increasingly liberal
significance thresholds (PT), for example, PT , 0.1 or PT , 0.5. Using
such thresholds, we defined large sets of ‘score alleles’ in a discovery
sample, to generate aggregate risk scores for individuals in independ-
ent target samples. We use the term score, instead of risk, as we
cannot differentiate the minority of true risk alleles from unasso-
ciated variants.

We performed the score analyses on a reduced set of SNPs to
facilitate analysis and interpretation. After filtering on MAF, geno-
typing rate and linkage disequilibrium (independent of association
with schizophrenia), we obtained a subset of 74,062 autosomal SNPs
in approximate linkage equilibrium (Supplementary Tables 6 and 7).
In each discovery sample, we selected sets of score alleles at different
association test PT thresholds. For each individual in the target sam-
ple, we calculated the number of score alleles they possessed, each
weighted by the log odds ratio from the discovery sample. To assess
whether the aggregate scores reflect schizophrenia risk, we tested for a
higher mean score in target cases compared to controls (sections
9–11 in Supplementary Information and Supplementary Table 7).

We selected males (2,176 cases, 1,642 controls) and females (1,146
cases, 1,945 controls) to form arbitrary discovery and target samples
(Supplementary Table 8). Score alleles designated in the discovery
sample were significantly enriched among target cases, and the effect
was larger for increasingly liberal PT thresholds. The score on the
basis of all SNPs with male discovery PT , 0.5 (n 5 37,655 SNPs)
was highly correlated with schizophrenia in target females
(P 5 9 3 10219), explaining ,3% of the variance (Nagelkerke’s
pseudo R2 from logistic regression), with higher scores in cases.
The results were not driven by only a few highly associated regions
(section 12 in Supplementary Information).

We eliminated several possible confounders, with emphasis on
subtle population stratification (Supplementary Tables 9–15).
Defining score alleles in British Isles samples and testing in target
samples from Sweden, Portugal and Bulgaria, and vice versa, we
observed a similar pattern of results. It is unlikely that the same
substructure is overrepresented in the corresponding phenotype class
when discovery and target samples are from distinct populations.
The effect is also stronger for SNPs within annotated genes
(Supplementary Table 16).

We used independent GWAS samples to replicate the polygenic
component, to examine whether this component is shared with bipo-
lar disorder11, and to demonstrate specificity by considering non-
psychiatric diseases. We used the entire ISC for the discovery sample,
considering the five most informative PT thresholds from the intra-
ISC analyses. The independent target samples were the MGS
European-American (MGS-EA), the MGS African-American (MGS-
AA) and the UK sample described previously by O’Donovan et al3.
The ISC-derived score was highly associated with disease in both
European schizophrenia samples (Fig. 2, Supplementary Fig. 6 and
Supplementary Table 17). The MGS-EA had a significantly higher
mean PT , 0.5 score in cases compared to controls (P 5 2 3 10228,
R2 5 3.2%), as did the smaller O’Donovan sample (P 5 5 3 10211,

R2 5 2.3%). Aggregate differences in allele frequencies and patterns
of linkage disequilibrium between Europeans and African-Americans
are expected to lead to an attenuated effect. Still, MGS-AA cases
carried more of the European-derived score alleles than the MGS-
AA controls (P 5 0.008; R2 5 0.4%).

The ISC-derived score alleles were also associated with bipolar
disorder in two independent samples. Both samples, STEP-BD12

and WTCCC13, had higher mean PT , 0.5 scores in cases than in
controls (P 5 7 3 1029, R2 5 1.9%, and P 5 1 3 10212, R2 5 1.4%,
respectively) indicating a substantial, shared genetic component.

To test disease specificity, we selected all six non-psychiatric
WTCCC samples (coronary artery disease, Crohn’s disease, hyper-
tension, rheumatoid arthritis, type I and type II diabetes). Controls
are shared among the WTCCC case samples, including bipolar dis-
order. In contrast to schizophrenia and bipolar disorder, there was no
association (P . 0.05) between the ISC-derived schizophrenia scores
and these non-psychiatric diseases, for any PT threshold.

We next investigated the genetic models consistent with our data. The
total additive genetic variance (VA) reflects the number of causal alleles,
as well as their frequency and effect size distributions. However, the
variance explained by the markers that tag these causal alleles (VM) will
be attenuated, reflecting the average extent of linkage disequilibrium
between marker and causal allele. In our target samples, the variance
explained by the observed score alleles (VS) will be further attenuated by
sampling variation and PT threshold, such that VS # VM # VA.

We used simulation to estimate possible values for VM and VA, by
identifying models that produced profiles of VS across PT threshold
that were similar to those observed in the ISC data, as indexed by the
target sample R2. Under a variety of genetic models, we simulated
discovery and target data sets of comparable sample size to the ISC.
On the basis of the empirical allele frequency distribution, we simu-
lated marker SNPs, varying the proportion that were in linkage
disequilibrium with causal variants, for which we varied allele
frequency (uniform, U-shaped) and effect size distributions (fixed
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Figure 2 | Replication of the ISC-derived polygenic component in
independent schizophrenia and bipolar disorder samples. Variance
explained in the target samples on the basis of scores derived in the entire
ISC for five significance thresholds (PT , 0.1, 0.2, 0.3, 0.4 and 0.5, plotted left
to right in each study). The y axis indicates Nagelkerke’s pseudo R2; the
number above each set of bars is the P value for the PT , 0.5 target sample
analysis. CAD, coronary artery disease; CD, Crohn’s disease; HT,
hypertension; RA, rheumatoid arthritis; T1D, type I diabetes; T2D, type II
diabetes. Numbers for cases/controls: MGS-EA 2,687/2,656; MGS-AA 1,287/
973; O’Donovan 479/2,938; STEP-BD 955/1,498; WTCCC 1,829/2,935;
CAD 1,926/2,935; CD 1,748/2,935; HT 1,952/2,935; RA 1,860/2,935; T1D
1,963/2,935; and T2D 1,924/2,935.
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Purcell	
  et	
  al.	
  did	
  not	
  find	
  any	
  GW	
  
significant	
  Schizophrenia	
  locus.	
  
	
  
But	
  they	
  gave	
  “polygenic	
  risk	
  score”	
  to	
  
each	
  individual	
  including	
  more	
  than	
  
thousands	
  of	
  gene,c	
  variants,	
  and	
  
tried	
  to	
  see	
  predic$ve	
  value	
  of	
  this.	
  	
  
	
  
They	
  showed	
  that	
  polygenic	
  risk	
  scores	
  
could	
  predict	
  schizophrenia	
  in	
  an	
  
independent	
  sample	
  but	
  not	
  in	
  non-­‐
psychiatric	
  diseases.	
  
	
  
Most	
  notably	
  they	
  showed	
  similar	
  
polygenic	
  background	
  behind	
  
schizophrenia	
  and	
  bipolar	
  disorder.	
  
	
  
Altogether,	
  these	
  indicate	
  polygenic	
  
nature	
  of	
  complex	
  disease	
  gene$cs.	




Es,ma,on	
  of	
  SNP	
  heritability	


•  Mixed	
  model	
  with	
  total	
  genotypic	
  effects	


y:	
  phenotype	
  
β:	
  fixed	
  effects	
  (age,	
  sex,	
  ...)	
  
X:	
  covariate	
  values	
  of	
  fixed	
  effect	
  terms	
  
W:	
  standardized	
  genotype	
  matrix	
  
u:	
  SNP	
  effects	
  as	
  random	
  effects	
  

(Jian	
  Yang	
  et	
  al.	
  Nat	
  Genet	
  2010;	
  42:	
  565.)	
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 conveniently implemented with a mathematically equivalent model 
that uses the SNPs to calculate the genomic relationship between 
pairs of subjects). Using this approach, we estimated the proportion 
of phenotypic variance explained by the SNPs as 0.45 (s.e. = 0.08, 
Table 1), a nearly tenfold increase relative to the 5% explained by 
published and validated individual SNPs.

Correcting for incomplete LD between SNPs and causal variants
Our estimate of 45% is still less than the 80% of phenotypic variance 
due to additive genetic effects (that is, the estimated heritability). One 
reason why the SNPs do not explain the full estimated heritability 
is that the SNPs on the arrays are not in complete LD with causal 
variants. The ability of the SNPs to explain the phenotypic variation 
caused by causal variants depends on the LD between all the causal 
variants and all the SNPs. Lack of complete LD is manifested as a 
 difference between the genomic relationship of each pair of subjects 
j and k at the causal variants (Gjk) and the relationship between the 
same individuals calculated from the SNPs (Ajk). As causal variants are 
unknown, we cannot estimate their LD with observed SNPs directly. 
However, we can mimic it by considering the LD of the genotyped 
SNPs with one another. It is likely that the causal variants and the 
SNPs have different properties, so LD among SNPs is only a guide to 
LD between causal variants and SNPs. One way in which the causal 
variants may differ from the SNPs is in MAF. To investigate how the 
difference between Gjk and Ajk depends on the number of SNPs used 
and the MAF of the causal variants, we randomly sampled five sets 
of SNPs (50K, 100K, … , 250K, where K = 1,000) in the adult data set 
and ten sets of SNPs in the adolescent data set (50K, 100K, … , 500K). 
For each SNP set, we randomly split the SNPs into two groups, the 
first representing SNPs and the second representing causal variants, 
and estimated genetic relationships using all of the SNPs in the first 
group (Ajk) and using SNPs with MAF   in the second group (proxy 
for Gjk), where  = 0.1, 0.2, 0.3, 0.4 or 0.5. We calibrated the predic-
tion error by calculating the regression of Gjk on Ajk. We established 

empirically that the regression coefficient 1
1( / )

var( )
c N

Ajk
 (Fig. 1), 

where N is the number of SNPs used to calculate Ajk and the term 
in c depends on the MAF of the causal variants (Online Methods). 
If the causal loci have the same spectrum of allele frequency as the 
genotyped SNPs (  = 0.5), then c = 0, and 1/N can be interpreted  
as the sampling error for estimating the relationship over the whole 
genome from N random SNPs. The parameter c is >0 if  < 0.5 because 
the relationship at causal variants with low MAF is typically less than 
the average relationship over the whole genome.

Therefore, given the number of SNPs used, we can correct the 
 estimate of the variance explained by the SNPs for incomplete LD with 
causal variants, if causal variants have the same allelic frequency spec-
trum as genotyped SNPs. Using the same linear model as above, but 
corrected for this incomplete LD (c = 0), we estimated the proportion 

of variance explained by causal variants to be 0.54 (s.e. = 0.10; Table 1). 
This estimate assumes that the LD between SNPs and causal variants 
is as strong as that between the genotyped SNPs. However, if the 
causal polymorphisms tend to have lower MAF than the SNPs that 
have been assayed, as expected from neutral and selection theories of 
quantitative genetic variation6,22, we expect the LD between SNPs and 
causal variants to be reduced. When we used SNPs with a MAF < 0.1  
as proxies for causal variants, we found c = 6.2 × 10−6. Using this 
value of c to correct for incomplete LD, we estimated the proportion 
of variance in height explained by causal variants to be 0.84 (s.e. = 
0.16; Supplementary Table 1). Although the standard error is high, 
this result is consistent with causal variants being, on average, at lower 
frequency than the SNPs used on commercial arrays and therefore 
in less LD with these SNPs than the LD of the SNPs with other SNPs. 
This does not prove that the causal variants have MAF < 0.1, but it 
shows that if this were the case, they could explain the estimated 
heritability of height (~0.8).

Variance explained does not depend on number of SNPs
If our procedure for correcting for incomplete LD between SNPs and 
causal variants is correct, the variance explained by the causal variants 
should not depend on the number of SNPs used. To show that this is 
so, we randomly sampled 10%, 20%, … , and 100% of all the ~295K 
SNPs and estimated the variance explained by causal variants for each 

Table 1 Estimation of phenotypic variance explained from genetic relationships among unrelated individuals by restricted  
maximum likelihood

No. SNPs L(H0)a L(H1)b LRTc
g
2 (s.e.) e

2 (s.e.) P
2 (s.e.) h2 d (s.e.)

295K SNPs Raw 294,831 −1950.89 −1936.12 29.53 0.445 (0.084) 0.546 (0.082) 0.991 (0.023) 0.449 (0.083)
Adj.e 294,831 −1950.89 −1936.12 29.53 0.532 (0.101) 0.458 (0.098) 0.991 (0.023) 0.537 (0.100)

295K/516K SNPsf Raw 294,831/516,345 −1950.89 −1935.94 29.89 0.449 (0.085) 0.536 (0.083) 0.986 (0.022) 0.456 (0.085)
Adj. 294,831/516,345 −1950.89 −1935.87 30.04 0.536 (0.101) 0.449 (0.099) 0.985 (0.022) 0.544 (0.101)

alog-likelihood under the null hypothesis that g
2=0. blog-likelihood under the alternative hypothesis that g

2  0; clog-likelihood ratio test statistic, LRT = 2[L(H1) − L(H0)]. dEstimate of variance 
explained by all SNPs, with its s.e. given in the parentheses. eRaw estimate of genetic relationship adjusted for prediction error with equation (9) (assuming c = 0). fThe genetic relationships are 
estimated from 1,318 individuals with 516,345 SNPs, and the other 2,607 individuals with 294,831 SNPs. See Online Methods for definitions of notations.
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Figure 1 Prediction error of genetic relationship. The genetic relationship 
at unobserved causal loci is predicted, with error, from the relationship 
estimated from genotyped SNPs. The prediction error was calibrated by 
comparing the relationship at causal loci (mimicked by a set of random 
SNPs with MAF  ) to that estimated from another set of random SNPs. 
Values plotted on the y axis are (1 − )var(Ajk) (see Online Methods for the 
notations), calculated from different numbers of random SNPs (N) in both 
adult and adolescent data sets. The slope of each line is equal to 1.0, 
with R2 = 1.0. The intercept (c) is constant for a certain MAF threshold ; 
c = 6.2 × 10−6 (P = 2 × 10−14), 3.4 × 10−6 (P = 9 × 10−12), 1.8 × 10−6 
(P = 4 × 10−10), 7.8 × 10−7 (P = 2 × 10−7) and 9.2 × 10−9 (P = 0.87,  
not significant) for  = 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.

(Jian	
  Yang	
  et	
  al.	
  Nat	
  Genet	
  2010;	
  42:	
  565.)	


•  GW	
  significant	
  SNPs	
  can	
  only	
  explain	
  ~	
  5%	
  of	
  height	
  variance	
  
•  However,	
  all	
  SNPs	
  could	
  explain	
  ~	
  45%.	
  
•  This	
  implicates	
  that	
  human	
  height	
  would	
  be	
  determined	
  by	
  hundreds	
  or	
  thousands	
  

of	
  gene$c	
  variants,	
  and	
  most	
  of	
  them	
  have	
  not	
  been	
  discovered	
  because	
  of	
  low	
  
sta$s$cal	
  power.	
  

•  This	
  explained	
  variance	
  is	
  s$ll	
  lower	
  than	
  twin	
  study’s	
  heritability	
  (80-­‐90%).	
  It	
  is	
  
suggested	
  that	
  “SNPs”	
  act	
  as	
  markers,	
  true	
  causa$ve	
  variants	
  (possibly	
  low	
  
frequency)	
  are	
  more	
  informa$ve	
  and	
  may	
  increase	
  explained	
  variance.	
  



Current	
  understanding	
  of	
  	
  
complex	
  disease	
  gene,cs	


Genomic profile risk
A predicted measure of genetic 
risk for individuals constructed 
from a set of loci, the risk 
alleles and corresponding 
effect sizes of which have been 
estimated in an independent 
sample.

sibling recurrence risk can vary substantially between 
studies. Finally, in addition to the overall disease risk, 
study design and time-dependent effects could also 
affect the measures considered here.

Focus on the mean or the variance?
Another important point to consider when contrasting 
the different measures is whether emphasis should be 
placed on assessing the effect of variants on the mean 
risk in a population or on the genetic variation. Under 
a simple additive model and assuming that there is no 
dominance effect (d = 0), the effect on the mean and the 
variance are 2pa and 2p(1 – p)a2, respectively (TABLE 1). 
Therefore, a variant at or near fixation (that is, p ≈ 1) can 
have a relatively large effect on the mean and no effect 
on the variance. Thus, for a given effect size, ‘interven-
ing’ on more common variants may help to reduce dis-
ease risk regardless of the amount of variance explained. 
Nevertheless, if there are many risk variants for disease, 
then it will be effectively impossible to remove or affect 
all of them to decrease risk. In this case, it does not make 
sense to use measures that focus on the mean (for exam-
ple, the PAF). Instead, we recommend using measures 
that help to understand and explain variation around 
the mean, which is a key component of genetic risk 
prediction.

Extensions and additional measures
Our focus is on measures for a limited number of 
variants, in which we extend the one-locus methods 
to multiple loci under the assumption of independ-
ence among risk variants. Hence, the most associated 
locus from a region is usually used. Necessarily, this 
requires some arbitrary threshold on linkage disequi-
librium, which becomes increasingly unsatisfactory as 
more associated loci are identified. To overcome this, 
associated loci can be fitted together in a regression 
analysis, and the variance explained that accounts for 
the interdependence between loci can be estimated.  
If the sample for discovery of the associated loci is used, 
then there may be some inflation of variance explained 
compared to the value obtained if the contribution was 
estimated from an independent sample drawn from 
the same population. Genomic profile risk scoring15,35 is 
a strategy used to test the efficacy of associated SNPs 
identified in one sample for the contribution to vari-
ance in another sample. Briefly, risk alleles and their 
effect sizes identified by a GWAS carried out in a dis-
covery sample are used to generate genomic profile 
risk scores (GPRSs) in an independent target sample, 
using SNPs with P values in the discovery sample that 
are below some user-defined threshold of significance. 
A GPRS is calculated for each individual in the target 
sample as the sum of the count of risk alleles weighted 
by the effect size in the discovery sample. The profile 
score is evaluated through regression of the target 
phenotype on the GPRS after accounting for other 
known covariates. The efficacy statistic is frequently 
Nagelkerke’s R2 or AUC, although expression on the 
liability scale may be more interpretable4.

To account for the correlational structure among loci 
and to estimate the overall proportion of variance that is 
attributable to variants genome wide, one can use more 
complex mixed models that jointly fit all variants5,36. 
Such methods estimate the variance that is attributable 
to all variants together, which is known as chip herit-
ability or SNP heritability. One can also partition this 
variance on the basis of variant annotation, for exam-
ple, those in loci identified as associated with disease 
versus all remaining variants. In this case, one fits the 
genetic contribution from known disease-associated 
loci as one random effect and the genetic contribution 
from all other loci as another. Then, the ratio of these 
will provide an estimate of the extent to which known 
risk variants explain the overall chip heritability. These 
different components of heritability explained by genetic 
variants are illustrated in FIG. 4.

Note that genetic variation as evaluated here is not 
the only measuring stick for the utility of identified risk 
variants. A set of variants may have good clinical utility 
in a particular context (that is, for some patients) while 
not explaining much variation in the population and vice 
versa. Moreover, various measures besides the AUC have 
been proposed to assess the risk prediction properties 
of known variants37. However, as many of these meas-
ures do not yield a single bounded summary value and 
are context dependent, they are not useful for assessing 
genetic variation per se.

Figure 4 | Aspects of disease heritability: known, hiding and missing. A growing 
proportion of the total heritability estimated from family studies can be explained by 
known variants detected in existing genome-wide association studies (GWASs). This is 
one of the key measures considered here. The remaining heritability can be categorized 
as ‘hiding’ heritability and ‘still-missing’ heritability. The hiding heritability can be 
estimated from genome-wide arrays using the Genetic Relatedness Estimation through 
Maximum Likelihood (GREML) model34. The still-missing heritability may remain even 
after GWASs and could reflect different genetic architectures (for example, rare 
variants). Note that the total heritability may be biased upwards owing to confounding 
by non-additive genetic or non-genetic factors.
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1
Figure 1. Prediction performance of BLUP and MultiBLUP on simulated quantitative traits.

The two plots correspond to unrelated humans (left) and related mice (right). They show across 50
repetitions the correlation between predicted and observed phenotypes in the test set, for BLUP (white
boxes) and MultiBLUP (shaded boxes). The x-axis indexes the simulation scenarios, with increasing
heterogeneity of e↵ect sizes across the five regions. Here MultiBLUP uses five GSMs, one for each region.
Within each plot, the true (simulated) heritability is 0.5 (left half) or 0.8 (right half).

Table 1. Prediction of case/control status for WTCCC1 human traits

Current methods MultiBLUP
Risk Score Stepwise Two-region

Trait BLUP (� log10(P )) Regression BSLMM MHC/non-MHC Adaptive
Bipolar Disorder 0.27 0.25 (1) 0.02 0.27 0.27 0.27
Coronary Artery Disease 0.13 0.12 (1) 0.08 0.15 0.13 0.16

Crohn’s Disease 0.32 0.28 (1) 0.18 0.34 0.29 0.36

Hypertension 0.15 0.14 (1) 0.00 0.14 0.14 0.17

Rheumatoid Arthritis 0.21 0.28 (3) 0.32 0.33 0.35 0.37

Type 1 Diabetes 0.25 0.34 (5) 0.54 0.57 0.56 0.59

Type 2 Diabetes 0.16 0.14 (1) 0.10 0.17 0.16 0.18

Average across 7 traits 0.21 0.22 0.18 0.28 0.27 0.30

Current methods BLUP, genetic risk scores, stepwise regression and BSLMM (Bayesian Sparse Linear
Mixed Models) are compared with MultiBLUP (regions defined according to MHC/non-MHC) and
Adaptive MultiBLUP (starting with 75 kb regions). Values report correlation between observed and
predicted phenotypes based on ten-fold cross-validation. For the genetic risk scores, we consider five
p-value thresholds (1 to 5 on the � log10 scale), and report the best prediction across these (and the
corresponding threshold in brackets). The largest correlation observed for each trait is marked in bold.
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Current	
  targets	
  ...	


•  Larger	
  and	
  larger	
  GWAS:	
  to	
  capture	
  common	
  variants	
  with	
  small	
  effect	
  sizes	
  

•  Low	
  frequency	
  variants,	
  structural	
  variants:	
  some	
  of	
  them	
  have	
  not	
  been	
  
captured	
  by	
  SNP	
  array	
  

•  Heritable	
  epigene,c	
  marks:	
  data	
  not	
  obtained	
  by	
  SNP	
  array,	
  but	
  the	
  existence	
  of	
  
parent-­‐of	
  origin	
  effect	
  indicates	
  its	
  involvement	
  

•  Epistasis	
  (gene-­‐gene	
  interac,on):	
  could	
  show	
  heritability	
  beyond	
  addi$ve	
  effects.	
  
A	
  few	
  analyses	
  succeeded	
  to	
  iden$fy	
  it,	
  but	
  not	
  enough	
  

•  Gene-­‐environmental	
  interac,on:	
  sophis$cated	
  epidemiological	
  sample	
  would	
  be	
  
necessary,	
  and	
  sta$s$cal	
  gene$cists	
  typically	
  do	
  not	
  have	
  it	




Closing	
  remarks	


•  We	
  are	
  analyzing	
  BioBankJapan	
  samples;	
  ~200,000	
  disease	
  samples	
  
from	
  47	
  diseases	
  and	
  ~	
  30,000	
  popula$on	
  controls,	
  all	
  of	
  them	
  are	
  
Japanese	
  and	
  have	
  ~	
  1,000,000	
  SNP	
  genotype	
  results.	
  

•  Our	
  main	
  aim	
  at	
  now	
  is	
  to	
  find	
  out	
  low-­‐frequency	
  variants	
  by	
  
combining	
  this	
  data	
  with	
  Whole	
  Genome	
  Sequencing	
  results.	
  

•  We	
  are	
  welcome	
  to	
  collaborate	
  with	
  researchers	
  who	
  want	
  to	
  use	
  
our	
  “big”	
  data	
  and	
  apply	
  sta$s$cally	
  sophis$cated	
  analysis!	



