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Human disease genetic mapping
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Human disease genetic mapping
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Linkage analysis

Linkage analysis

Llnkage analysis Model parameters explicitly, estimate them,
and the lod score, a kind of likelihood ratio, is

PYT Ta evaluated.
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Linkage analysis

e Successes of linkage analysis

M — e ——————————
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A polymorphic DNA marker genetically linked
to Huntington’s disease Gusella et al, Nature 1983

James F. Gusella’, Nancy S. Wexler", P. Michael Conneally’, Susan L. Naylor®, 9 Huntin gtl n gene
Mary Anne Anderson’, Rudolph E. Tanzi', Paul C. Watkins *, Kathleen Ottina ,

Margaret R. Wallace*, Alan Y. Sakaguchi’, Anne B. Young', Ira Shoulson’,
Ernesto Bonilla' & Joseph B. Martin

— Cystic fibrosis
— Familial breast cancer (BRCA1 / BRCA2)
— possibly, Familial hypercholesterolemia (LDLR)

They are Mendelian diseases



Gene mapping study
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Genetic association study

Box 1| Rationale for association studies

Most recent common ancestor
[

Time O Case
O Control

%j? Ancestral

mutation

VoL 3! lﬂlgz,@;:fufﬁz

(Balding DJ. Nat Rev Genet 2006; 7:781-91.)

Allele frequency might differ between Case and Control
Detect it by using association testing



Do association test ... why?

Singletons Sib pairs
Genotypic Frequency Probability No. of Probability of  Proportion of
risk ratio of disease of allele  families transmitting  heterozygous
allele A sharing required disease allele A parents
(9] (p) (Y) (N) P(tr-A) (Het) (N) (Het) (N)
4.0 0.01 0.520 4260 0.800 0:048 1088 0112 235
0.10 0.597 185 0.800 0.346 150 0.537 48
0.50 0.576 29y 0.800 0500 103 0424 61
0.80 0.529 2013 0.800 0235 . 222 0.163 161
2.0 0.01 0.502 296,710 0.667 0029 5823 0043 1970
0.10 0.518 5382 0.667 0.245 695 0.323 264
0.50 0.526 2498 0.667 0.500 340 0.474 180
0.80 0.512 11,917 0.667 0.267 640 0.217 394
18 0.01 0.501 4,620,807 0.600 0.025 19320 0031 7776
0.10 0.505 67,816 0.600 0.197 2218 0.253 941
0.50 0.510 17,997 0.600 0.500 949 0.490 484
0.80 0.505 67,816 0.600 0.286 1663 0.253 941

Comparison of linkage and association studies. Number of families needed for identification of a
disease gene.

Risch N and Merikangas K. Science 1996; 273: 1516.



Linkage disequilibrium

Suppose two genetic loci

A

Chromosome :‘\/x 1 )
W

Alleles at these loci are independent if ...

— these two loci locate on different chromosomes because of Mendel’s law of
segregation

— these two loci locate on the same chromosome, but their distance is long
enough to become independent because of repetitive meiotic recombination

Otherwise they are associated, in other words, in linkage disequilibrium
(LD). If locus 1 and 2 are in LD, and locus 1 is the causative locus, then
locus 2 would also show association.



Linkage disequilibrium

LD is defined as “non-random sharing of
combinations of variants”

When f, =0.1 and f; = 0.4

Random sharing Non-random sharing
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Recombination rate (cM Mb-")
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ENM014.7631.33 No need to genotype all the
variants in a region ... itis
enough to select some SNPs
which are in LD with other
variants.

YRI

In general, a SNP set which have
r? value above 0.8 with the
other SNPs is called “tagSNPs”.

Simple statistical genetics
calculation can show that N/r2
sample size is needed to achieve
the same power to detect
association with the “tagSNPs”.

The International HapMap
consortium. Nature 2005.
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Commercial SNP arrays

based on HapMap tag SNPs

~ 2,500,000 SNPs
discovered by HapMap2

~ 300,000 tagSNPs ~ 500,000 tagSNPs
representing SNPs representing SNPs
in Caucasian in Caucasian + Asian

.

!

~ 1,000,000 tagSNPs
representing SNPs in
Caucasian + Asian + African
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Genome-wide association study

300,000 ~ SNPs
> which are tagged SNPs

from HapMap or from 1000 genomes project

\ 4

Quality control of the genotypes

@

Chi-squared test
Regression test

Do association test at each SNP site

4

Get results !




Q-Q plot for quality control

* GWAS uses hundreds of thousands of SNP
results, and the quality must be assured by
Quality Control processes. And this can be
evaluated by Q-Q plot.

0 Tests T
y =X
y=111
°
-4 o
> @
g 2 g
o] w1
8 8
0
0

10
Expected

Expected
Figure 2 Quantile-quantile plots of Cochran-Armitage test statistics. The
ranked, observed values for 6,322 nsSNPs are plotted against the values Figure 3 Quantile-quantile plots of Cochran-Armitage test statistics of
expected for sampling from a % distribution with one degree of freedom 4,629 nsSNPs with half-call rates <0.5% and a difference in call rates
(the distribution expected under the null hypothesis). between cases and controls of no more than 5%.

Clayton D et al. Nat Genet 2005; 37: 1423.



Population stratificaiton

e Population stratification can cause false
positives

Population 1 Cases Population 2

I
I
I

Controls

Genotype .aa .Aa .AA

Marchini J et al. Nat Genet 2004; 36: 512.



Principal component analysis

Japanese in Tokyo (JPT)
% Han Chinese in Beijing (CHB) Score for PC1

Yoruba in Ibadan, Nigeria (YRI) pop
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Principal component analysis
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PC1 | (Heath, SC et al. EJHG 2008; 16: 1413.)



Principal component analysis
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Common inversion
polymorphism in chromosome
8 (Hevra R, de la Chapelle A.
AJHG 1976; 28: 208.)



Mixed Linear Model Association

 Relatedness between individuals in case or in control could cause
spurious association since it can increase / decrease allele
frequency irrespective of disease status.

* Typically, sample filtration is performed to remove 1t and 2"
degree relatedness, and possibly more.

 Mixed Linear Model Association (MLMA) is a solution to adjust any
levels of relatedness

Y=XO8+u+e
Var(u):cr;K

K: matrix of pairwise genetic similarity



GWAS for

Age-related Macular Degeneration (AMD)

European Cases ~ 1,000: European Controls ~ 4,000 -> 2 GW signals
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(Leveillard T, Kamatani Y, Lathrop M et al. Unpublished data)

Japanese Cases ~ 1,500: Japanese Controls ~ 20,000 -> 2 GW signals
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(Arakawa S et al. Nat Genet 2011;43:1001-5)

GWAS yields disease susceptible loci with confident associations and with robustness.



Observed data at 3 genetic loci T/C, A/A, T/C

Construct haplotypes

.

...1...AC,

...C...AT.




Observed data at 3 genetic loci T/C, A/A, T/C

ﬁ Reference haplotypes

TGTCCGGATC
. TCCTCGTACG TCCTCGTACG
Impute missing genotypes =
TGTCCGGATC TGTTTGGGTC
CGCTCATACC

e The reference template is typically HapMap panel or 1000 genomes panel.
e QObserved loci are typically from SNP arrays, of which loci are “tagSNPs” from
HapMap or from 1000 genomes results.



Imputation (Marchini’s model)

P(G;|H,0, p) ZP Gi|Z,0)P(Z|H, p)

G, : vector of genotypes of individual i

H: population haplotypes

0: other parameters

p: recombination map across the genome

Z: 2 copies of haplotypes from population, which form individual genotypes



Imputation (Marchini’s model)

P(Gi|H,0,p) =) P(G;|Z,6)P(Z|H, p)

Emission probability : governed by mutation rate

G1 GI Gi+1 GL
Z1(1) 7.(1) zi: (1) ZL(l)
21(2) 7.(2) Z, (2) ZL(Z)

Transition probability : governed by recombination rate (p)



Imputation (Marchini’s model)
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Application of imputation

Study 1
— imputed on KGP l

7M SNPs

Study 1
— imputed on KGP
7M SNPs

Study 1
— imputed on KGP
7M SNPs




Meta-analysis of AMD GWAS

Cases ~ 1,000: Controls ~ 4,000 > 2 GW signals
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(The AMD Gene Consortium. Nat Genet 2013;45:433-9)
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Genome-wide meta-analysis can increase statistical power, and enables us to identify
tens of susceptible loci for a disease trait or a quantitative trait.



Creating drugs

ene mapping result

Linkage analysis and positional cloning
identified PCSK9 as a novel causative locus for
autosomal dominant hypercholesterolemia
(Abifadel M et al. Nat Genet 2003;34:154)

GWAS confirmed that PCSK9 was also
associated with LDL cholesterol level in

general population (Global Lipids Genetics
Consortium. Nat Genet 2013; 45: 1274,
and several other reports.)

Functional role of PCSK9 protein was revealed...

ORIGINAL ARTICLE

And a new drug lowering LDL

Effect of a Monoclonal Antibody to PCSK9 cholesterol is going to be approved

on LDL Cholesterol

Evan A. Stein, M.D., Ph.D., Scott Mellis, M.D., Ph.D.,
Georoe D Yanconon loc M D Ph D Neil Stahl Ph D Douoclaslaocan M D



Estimation of heritability

* By using “genome-wide significant” SNPs,
W= 2f;(1— f:)B;
i

calculates aggregate contribution of significant SNPs
under additive genetic model, when values {0,1,2} are
given to each biallelic genotype (for example, A/A, A/a,
and a/a) .B, is an effect size at locus i.

* This should be equal to “narrow-sense heritability”



Estimation of heritability

* Polygenic model
P=G+EFE

Va

h= =
Vp

G: genetic effect
E: residuals (supposed to be environmental effect)
P: phenotypic value



Polygenic model

P=A+FE
P=A+D+FE

P=A+D+AA+FE
P=A+D+AA+AD+ FE

P=A+D+AA+AD + AAA+ FE



Polygenic model

* Narrow-sense heritability

* Broad-sense heritability

Vo Va+Vp+Vaa+Vap+Vasaa+---
Vp Vp

H? =




Estimation of heritability

twin stud
 Covariance of twins
COUmz — VA =+ VC,mz

1
Covdz — §VA + VC,dz

Monozygotic twins Dizygotic twins



Estimation of heritability

twin stud

 Covariance of twins
COUmz — VA + VC,mz

1
Covdz — §VA + VC,dz



Estimation of heritability

twin stud

* Covariance of twins under the existence of
dominance and epistasis effects

Covpp =VA+Vp +Vaa+Vap +Vaasa+---+ VC,mz

1 1 1 1 1
Covg, = §VA + ZVD + ZVAA + gVAD + éVAAA + -+ Vo

Va+3Vp +3Vaa+ IVap + IVasa + -
Q(Tmz—’r'dz): A o VD 7 VAA V4 AD 4 VAAA >h2
P




Missing heritability

The explained variance using genome- Type 2 diabetes -
wide significant loci (red bars) are much
smaller than the herita blllty estimates Systemic lupus erythematosus -
from twin studies, which are expressed
as 100% in the right plot. Height -

HDL cholesterol -

Disease

Fasting glucose -

Early onset myocardial infarction -

Crohn's disease -

Age-related macular degeneration -
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Variance explained (R?)

Polygenic score analysis

P=2x1028
0.083 1
1o P <0.1
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Schizophrenia  Bipolar disorder

Non-psychiatric (WTCCC)

Purcell et al. did not find any GW
significant Schizophrenia locus.

But they gave “polygenic risk score” to
each individual including more than
thousands of genetic variants, and
tried to see predictive value of this.

They showed that polygenic risk scores
could predict schizophrenia in an
independent sample but not in non-
psychiatric diseases.

Most notably they showed similar
polygenic background behind
schizophrenia and bipolar disorder.

Altogether, these indicate polygenic
nature of complex disease genetics.

(The International Schizophrenia Consortium. Nature 2009; 460: 748.)



Estimation of SNP heritability

* Mixed model with total genotypic effects

y = X8+ Wu+e var(y) = WW/'o2 4 Io?

€

y: phenotype

B: fixed effects (age, sex, ...)

X: covariate values of fixed effect terms

W: standardized genotype matrix

u: SNP effects as random effects U ~ [N (O, IO‘i)

e~ N (O, Ia?)

(Jian Yang et al. Nat Genet 2010; 42: 565.)



Estimation of SNP heritability

* Mixed model with total genotypic effects

y = X3+ Wu+ ¢ var(y) = WW'o? + Io?
2 2
- Bytaking A = WW'/N and o0, = No,,

y=X8+g+e Vaulv(y):Aas—l—Iae2

(Jian Yang et al. Nat Genet 2010; 42: 565.)



Estimation of SNP heritability

Table 1 Estimation of phenotypic variance explained from genetic relationships among unrelated individuals by restricted
maximum likelihood

No. SNPs L(H)? L(H;)P LRT® oZ (s.e.) o2 (s.e.) op (s.e.) h2d(s.e.)
295K SNPs Raw 294,831 ~1950.89  -1936.12  29.53  0.445(0.084) 0.546 (0.082)  0.991 (0.023) 0.449 (0.083)
Adj.c 294,831 -1950.89  -1936.12  29.53  0.532(0.101) 0.458(0.098)  0.991 (0.023) 0.537 (0.100)

295K/516K SNPsf  Raw 294,831/516,345 -1950.89 -1935.94 29.89 0.449 (0.085) 0.536 (0.083) 0.986 (0.022) 0.456 (0.085)
Adj. 294,831/516,345 -1950.89 -1935.87 30.04 0.536 (0.101) 0.449 (0.099) 0.985 (0.022)  0.544 (0.101)

alog-likelihood under the null hypothesis that o, 2=0. Plog-likelihood under the alternative hypothesis that Oy 2 # 0; Clog-likelihood ratio test statistic, LRT = 2[L(H;) — L(Hp)1. 9Estimate of variance
explained by all SNPs, with its s.e. given in the parentheses. ®Raw estimate of genetic relationship adjusted for prediction error with equation (9) (assuming ¢ = 0). The genetic relationships are
estimated from 1,318 individuals with 516,345 SNPs, and the other 2,607 individuals with 294,831 SNPs. See Online Methods for definitions of notations.

e GW significant SNPs can only explain ~ 5% of height variance

* However, all SNPs could explain ~ 45%.

e This implicates that human height would be determined by hundreds or thousands
of genetic variants, and most of them have not been discovered because of low
statistical power.

* This explained variance is still lower than twin study’s heritability (80-90%). It is
suggested that “SNPs” act as markers, true causative variants (possibly low
frequency) are more informative and may increase explained variance.

(Jian Yang et al. Nat Genet 2010; 42: 565.)



Current understanding of

lex disease genetics

— Total heritability
e Estimated from family studies and assumed to reflect additive
genetic effects

Still-missing heritability: not captured by GWAS variants

| ®» On average will not decrease with larger sample size but will
decrease as more of the genetic variance is captured

(for example, rare variants)

Missing
Heritability

=— Chip heritability
* Proportion of variance attributed to all variants assayed
by GWAS arrays

— [ Hiding heritability: could ultimately be captured by
GWAS variants
* Should decrease as sample sizes grow

= — Heritability due to known variants
¢ Proportion of variance attributed to significant GWAS variants

Zero heritability explained

(Witte JS et al. Nat Rev Genet 2014; 15: 765.)



Other estimation methods of

SNP heritabilit

Table 1. Prediction of case/control status for WTCCC1 human traits

Current methods MultiBLUP
Risk Score Stepwise Two-region
Trait BLUP (—log;((P)) Regression BSLMM | MHC/non-MHC Adaptive
Bipolar Disorder 0.27 0.25 (1) 0.02 0.27 0.27 0.27
Coronary Artery Disease | 0.13 0.12 (1) 0.08 0.15 0.13 0.16
Crohn’s Disease 0.32 0.28 (1) 0.18 0.34 0.29 0.36
Hypertension 0.15 0.14 (1) 0.00 0.14 0.14 0.17
Rheumatoid Arthritis 0.21 0.28 (3) 0.32 0.33 0.35 0.37
Type 1 Diabetes 0.25 0.34 (5) 0.54 0.57 0.56 0.59
Type 2 Diabetes 0.16 0.14 (1) 0.10 0.17 0.16 0.18
Average across 7 traits 0.21 0.22 0.18 0.28 0.27 0.30

(Speed D and Balding DJ. Genome Res 2014 published in advance.)



Current targets ...

Larger and larger GWAS: to capture common variants with small effect sizes

Low frequency variants, structural variants: some of them have not been
captured by SNP array

Heritable epigenetic marks: data not obtained by SNP array, but the existence of
parent-of origin effect indicates its involvement

Epistasis (gene-gene interaction): could show heritability beyond additive effects.
A few analyses succeeded to identify it, but not enough

Gene-environmental interaction: sophisticated epidemiological sample would be
necessary, and statistical geneticists typically do not have it



Closing remarks

We are analyzing BioBanklJapan samples; ~200,000 disease samples
from 47 diseases and ~ 30,000 population controls, all of them are
Japanese and have ~ 1,000,000 SNP genotype results.

Our main aim at now is to find out low-frequency variants by
combining this data with Whole Genome Sequencing results.

We are welcome to collaborate with researchers who want to use
our “big” data and apply statistically sophisticated analysis!
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