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Binary data Graphs
  abcdefghij

1  0011001110
2  1101101110
3  1011001110
4  1100100101
5  1101101110

ID

{a, b, e} {d, g, h, i}

Pattern mining

Support: 3 4 3 2 3

P value: 0.06 0.01 0.02 0.07 0.02

The P value is crucial for scienti�c discovery!

(Statistically) Signi�cant patterns
(P value < 0.05)
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Find Subgraphs

Active

Inactive
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Find Subgraphs

Active

Inactive
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Find Subgraphs

Active
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Find Subgraphs

Active

Inactive
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Hypothesis Test for Each Subgraph

True Positive False Positive
(Type I Error)

False Negative
(Type II Error) True Negative

Declared 
signi�cant

Declared
non-signi�cant

Null hypothesis
is true

Alternative hypothesis
is true

Null hypothesis: 

Alternative hypothesis: 

The occurence of the subgraph is
independent from the activity
The occurence of the subgraph is
associated with the activity
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Testing the Independence of Subgraph

• Given two sets of graphs G and G ′

– ∣G∣ = n, ∣G ′∣ = n′ (n ≤ n′)

• The P value of each subgraph H ⊑ G with G ∈ G ∪G ′ is
determined by the Fisher’s exact test

x nn – x

n’ – x’x’ n’

x + x’ n + n’

Occ. Non-occ. Total

Total (n – x)
+ (n’ – x’)

0
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x / n

x’ / n’
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Fisher’s Exact Test

• The probability q(x) of obtaining x and x ′ is given by the
hypergeometric distribution:

q(x) = (nx)(n′x ′)/(n + n′

x + x ′)
x nn – x

n’ – x’x’ n’

x + x’ n + n’

Occ. Non-occ. Total

Total (n – x)
+ (n’ – x’)
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xxmin
= max{0, x + x’ - n’}

xmax
= min{x + x’, n}

P value
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Multiple Testing

Active
Inactive

Occur.

Total

Fisher’s exact test: P value = 0.029

Non-occur.

4
0

4

0
4

4

4
4

8

Total

Task: Detect all
signi�cant subgraphs

We need multiple
testing correction!
 Otherwise, too many
 false positives:
 FWER = 1 – (1 – α)m

m subgraphs

Problems:
 – m is massive
 – The signi�cance level α / m 

in Bonferroni correction
 becomes too conservative

Active
Inactive

Occur.

Total

Fisher’s exact test: P value = 0.143

Non-occur.
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Fisher’s exact test: P value = 0.143

Non-occur.

0
3

3

4
1

5

4
4

8

Total

Active
Inactive

Occur.

Total

Fisher’s exact test: P value = 1

Non-occur.

1
0

1

3
4

7

4
4

8

Total

10/40



Counting the Frequency of Subgraphs

Active

Inactive
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Counting the Frequency of Subgraphs
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Counting the Frequency of Subgraphs

Frequency

f (         )  = 7
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Counting the Frequency of Subgraphs

Frequency

f (         )  = 6
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The Minimum P Value

• The minimum achievable P value
for the frequency f (H) of a subgraph H is

Pmin = ( n
f (H))/ (n + n′

f (H) )

0

0.3
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xmin
= max{0, f(H) – n’}

xmax
= min{f(H), n}

Minimum
P value

nn – f(H)

n’0 n’

f(H)

f(H)

n + n’

Occ. Non-occ. Total

Total (n – f(H))
+ n’

Most biased case (f(H) < n)

Active

Inactive
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Testability

• The minimum achievable P value
for the frequency f (H) of a subgraph H is

Pmin = ( n
f (H))/ (n + n′

f (H) )
• Tarone (1990) pointed out (and Terada et al. (2013) revisited):

For a hypothesis H, if its minimum P value is smaller than
the significance threshold, this is untestable and
we can ignore it

– Untestable hypotheses (subgraphs) do not increase the FWER
– The Bonferroni factor reduces to the number of testable
hypotheses
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Finding the Optimal Correction Factor

• m(k): # of subgraphs whose minimum P values < α/k
– k: the correction factor, α/k: the corrected significance level

• For each k, FWER is controlled as (Tarone 1990):

FWER ≤ m(k)α
k
=
m(k)
k

α

• Our task:
– Find the smallest k while controlling FWER ≤ α

◦ Coincides with the “root” krt of the function m(k) − k
◦ m(k) ≤ k for all k ≥ krt and m(k) > k for all k < krt

– Enumerate testable subgraphs whose min. P values < α/krt
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Testable Subgraphs

Minimum P value

Frequency is large
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Testable Subgraphs

Minimum P value

Frequency is large

Signi�cance level
α / 10

k = 10, 

Testable subgraphsUntestable subgraphs

m(10) = 1 (this k is the Bonferroni factor)
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Testable Subgraphs

Minimum P value

Frequency is large

Signi�cance level
α / 9

k = 9, 

Testable subgraphsUntestable subgraphs

m(9) = 4
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Testable Subgraphs

Minimum P value

Frequency is large

Signi�cance level
α / 8

k = 8, 

Testable subgraphsUntestable subgraphs

m(8) = 6
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Testable Subgraphs

Minimum P value

Frequency is large

α / 7

k = 7, 

Testable subgraphsUntestable subgraphs

m(7) = 8

Signi�cance level
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Testable Subgraphs

Minimum P value

Frequency is large

Signi�cance level
α / 8

k = 8, 

Testable subgraphsUntestable subgraphs

m(8) = 6
The reduced Bonferroni factor

Compute the (exact) P values of these
testable subgraphs
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Subgraphs Are Testable Iff Frequent

• Our task:
Find k such that

(# of subgraphs whose minimum P values < α/k) = k
⇓

Find σ such that
(# of subgraphs whose frequency ≥ σ) = α/ψ(σ)

Testable subgraphs = Frequent subgraphs
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Use Frequent SubgraphMining

• Testable subgraphs can be enumerated by
frequent subgraph mining algorithms

• Proposition:
The set of testable subgraphs τ(H) coincides with
the set of frequent subgraphs with the threshold σrt s.t.
# of subgraphs with minfreq σrt − 1 > α/ψ(σrt − 1),

# of subgraphs with minfreq σrt ≤ α/ψ(σrt),
– α/ψ(σ) shows the admissible number of subgraphs at σ

◦ ψ(σ) = (n
σ
) / (n+n′

σ
) (Minimum P value at σ)

◦ For krt = α/ψ(σrt), if ψ is monotonically decreasing, m(krt) =∣ { H ∈ H ∣ ψ(f (H)) ≤ ψ(σrt) } ∣ = ∣ { H ∈ H ∣ f (H) ≥ σrt } ∣
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How to Use SubgraphMining

# of subgraphs

Frequency
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Brute-Force Search (Bonferroni)

# of subgraphs

Frequency

Brute-force
(Bonferroni method)

Freq. threshold is 1
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Decremental Search (LAMP)

# of subgraphs

Frequency

Decremental
search

Terminate if # of subgraphs is larger than α / ψ(σ)
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Incremental Search

# of subgraphs

Frequency

Incremental
search

Terminate if # of subgraphs detected so far exceeds α / ψ(σ)
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Datasets

Dataset Size #positive avg.∣V ∣ avg.∣E∣ max∣V ∣ max∣E∣
PTC (MR) 584 181 31.96 32.71 181 181
MUTAG 188 125 17.93 39.59 28 66
D&D 1178 691 284.32 715.66 5748 14267
NCI1 4208 2104 60.12 62.72 462 468
NCI167 80581 9615 39.70 41.05 482 478
NCI220 900 290 46.87 48.52 239 255
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Correction Factor
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Number of Significant Subgraphs
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Running Time (second)
Ru

nn
in

g 
tim

e 
(s

)

10–1

10

103

105

10–1

10

103

105

Ru
nn

in
g 

tim
e 

(s
)

10–1

10

103

105

5 10 15 Limitless 5 10 15 Limitless

Max. size of subgraph nodes
5 10 15 Limitless

PTC(MR) MUTAG

NCI1

10–1

10

103

105

10–1

10

103

105

5 10 15 Limitless

Max. size of subgraph nodes
5 10 15

Limitless

D&D

NCI220

10–1

10

103

105

Max. size of subgraph nodes
5 10 15 Limitless

NCI167

Brute-force
Decremental
Incremental

33/40



Running Time Summary

• RMSD (root mean square deviation) of running time (seconds)
to the best (fastest) running time on all datasets

Brute-force Decremental (LAMP) Incremental

6.994 × 104 2.410 × 104 1.230 × 102

• Incremental search is the fastest
– More than two orders of magnitude faster than brute-force
– Much faster than decremental (LAMP) as the final minimum
frequency is usually small (∼20)
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Final Minimum Frequency

Dataset Maximum size of subgraph nodes n
5 7 9 11 13 15 Limitless

PTC(MR) 9 10 11 11 11 11 11 181
MUTAG 8 10 11 12 14 — — 125
D&D 20 22 22 22 22 22 22 691
NCI1 17 20 22 25 27 29 — 2104
NCI167 7 8 9 10 11 — — 9615
NCI220 10 11 13 14 15 16 18 290
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Detected Significant Subgraphs

PTC (MR)
(carcinogenicity)

NCI 220
(anti-cancer activity)
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FWER Is still Too Low!
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Related work: LAMP version 2

• Minato et al. proposed a faster version of LAMP
in itemset mining
– Minato, S., Uno, T., Tsuda, K., Terada, A. and Sese, J.:
Fast Statistical Assessment for Combinatorial Hypotheses
Based on Frequent Itemset Mining
ECML PKDD 2014

• The idea is almost the same with our incremental search
– Start from σ = 1, every time an item is added,
the condition ∣I(σ)∣ ≤ α/ψ(σ) is checked
◦ I(σ): the set of itemsets found so far with the frequency ≥ σ

– As soon as ∣I(σ)∣ > α/ψ(σ), the current σ is too large and we
decrement it
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Conclusion

• Significant subgraphs mining with multiple testing
correction is achieved
– The first work that considers multiple testing correction in
graph mining

• Efficient and effective (less false negatives) using
testability

• Future work
– Increase the FWER with keeping ≤ α

◦ Currently we ignore correlations between subgraphs
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Papers about Testability
• Tarone, R.E.:
Amodified Bonferroni method for discrete data
Biometrics (1990)

• Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.:
Statistical significance of combinatorial regulations,
Proc. Natl. Acad. Sci. USA (2013).

• Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.:
Fast Statistical Assessment for Combinatorial Hypotheses
Based on Frequent Itemset Mining
ECML PKDD 2014

• Sugiyama, M., Llinares López, F., Kasenburg, N., Borgwardt, K.M.:
Significant SubgraphMining with Multiple Testing Correction,
SIAM SDM 2015 (http://arxiv.org/abs/1407.0316)
– Code: http://git.io/N126

40/40

http://arxiv.org/abs/1407.0316
http://git.io/N126

	Title
	Motivation
	Motivation

	Problem Formulation
	Find Subgraphs
	Find Subgraphs
	Find Subgraphs
	Find Subgraphs
	Hypothesis Test for Each Subgraph
	Testing the Independence of Subgraph
	Fisher's Exact Test
	Multiple Testing

	Testable Subgraphs
	Counting the Frequency of Subgraphs
	Counting the Frequency of Subgraphs
	Counting the Frequency of Subgraphs
	Counting the Frequency of Subgraphs
	The Minimum P Value
	Testability
	Finding the Optimal Correction Factor
	Testable Subgraphs
	Testable Subgraphs
	Testable Subgraphs
	Testable Subgraphs
	Testable Subgraphs
	Testable Subgraphs

	Algorithms with Frequent Subgraph Mining
	Subgraphs Are Testable Iff Frequent
	Use Frequent Subgraph Mining
	How to Use Subgraph Mining
	Brute-Force Search (Bonferroni)
	Decremental Search (LAMP)
	Incremental Search

	Experiments
	Datasets
	Results
	Number of Significant Subgraphs
	Running Time (second)
	Running Time Summary
	Final Minimum Frequency
	Detected Significant Subgraphs

	Concluding Remarks
	FWER Is still Too Low!
	Related work: LAMP version 2
	Conclusion
	Papers about Testability


