February 16, 2015 Tokyo Workshop on Statistically Sound Data Mining

Multiple Testing Correction in Graph Mining

Mahito Sugiyama (Osaka University, JST PRESTO)

Joint work with Felipe Llinares López¹, Niklas Kasenburg², Karsten Borgwardt¹ (¹ETH Zürich, ²Univ. Copenhagen)

The *P* value is crucial for scientific discovery!

6/40

Hypothesis Test for Each Subgraph

Testing the Independence of Subgraph

- Given two sets of graphs ${\mathcal G}$ and ${\mathcal G}'$

$$- |\mathcal{G}| = n, |\mathcal{G}'| = n' (n \le n')$$

The *P* value of each subgraph *H* ⊑ *G* with *G* ∈ *G* ∪ *G*' is determined by the Fisher's exact test

G x n-x G' x' n'-x'	n
\mathcal{G}' x' $n'-x'$	
	n'
Total $x + x' = (n - x) + (n' - x')$	n + n'

Fisher's Exact Test

 The probability q(x) of obtaining x and x' is given by the hypergeometric distribution:

$$q(\mathbf{x}) = \binom{n}{\mathbf{x}}\binom{n'}{\mathbf{x}'} / \binom{n+n'}{\mathbf{x}+\mathbf{x}'}$$

Multiple Testing

11/40

14/40

The Minimum P Value

• The minimum achievable *P* value for the frequency *f*(*H*) of a subgraph *H* is

$$P_{\min} = \binom{n}{f(H)} / \binom{n+n'}{f(H)}$$

Testability

• The minimum achievable *P* value for the frequency *f*(*H*) of a subgraph *H* is

$$P_{\min} = \binom{n}{f(H)} / \binom{n+n'}{f(H)}$$

- Tarone (1990) pointed out (and Terada et al. (2013) revisited): For a hypothesis H, if its minimum P value is smaller than the significance threshold, this is untestable and we can ignore it
 - Untestable hypotheses (subgraphs) do not increase the FWER
 - The Bonferroni factor reduces to the number of testable hypotheses

Finding the Optimal Correction Factor

- m(k): # of subgraphs whose minimum P values < α/k
 k: the correction factor, α/k: the corrected significance level
- For each *k*, FWER is controlled as (Tarone 1990):

FWER
$$\leq m(k)\frac{\alpha}{k} = \frac{m(k)}{k}\alpha$$

- Our task:
 - Find the smallest k while controlling FWER $\leq a$
 - Coincides with the "root" k_{rt} of the function m(k) k
 - $m(k) \le k$ for all $k \ge k_{rt}$ and m(k) > k for all $k < k_{rt}$
 - Enumerate testable subgraphs whose min. *P* values $< \alpha/k_{rt}$

Subgraphs Are Testable Iff Frequent

• Our task:

Find k such that (# of subgraphs whose minimum P values < a/k) = k $\downarrow \downarrow$ Find σ such that (# of subgraphs whose frequency $\geq \sigma$) = $a/\psi(\sigma)$ Testable subgraphs = Frequent subgraphs

Use Frequent Subgraph Mining

- Testable subgraphs can be enumerated by frequent subgraph mining algorithms
- Proposition:

The set of testable subgraphs $\tau(\mathcal{H})$ coincides with the set of frequent subgraphs with the threshold σ_{rt} s.t.

of subgraphs with minfreq $\sigma_{rt} - 1 > \alpha/\psi(\sigma_{rt} - 1)$,

of subgraphs with minfreq $\sigma_{rt} \leq \alpha/\psi(\sigma_{rt})$,

- $\alpha/\psi(\sigma)$ shows the admissible number of subgraphs at σ
 - $\psi(\sigma) = \binom{n}{\sigma} / \binom{n+n'}{\sigma}$ (Minimum *P* value at σ)
 - For $k_{rt} = \alpha/\psi(\sigma_{rt})$, if ψ is monotonically decreasing, $m(k_{rt}) = |\{H \in \mathcal{H} \mid \psi(f(H)) \le \psi(\sigma_{rt})\}| = |\{H \in \mathcal{H} \mid f(H) \ge \sigma_{rt}\}|$

How to Use Subgraph Mining

of subgraphs

Brute-Force Search (Bonferroni)

Decremental Search (LAMP)

Incremental Search

Datasets

Dataset	Size	#positive	avg. V	avg. <i>E</i>	max V	max E
PTC (MR)	584	181	31.96	32.71	181	181
MUTAG	188	125	17.93	39.59	28	66
D&D	1178	691	284.32	715.66	5748	14267
NCI1	4208	2104	60.12	62.72	462	468
NCI167	80581	9615	39.70	41.05	482	478
NCI220	900	290	46.87	48.52	239	255

Correction Factor

31/40

Number of Significant Subgraphs

Running Time (second)

33/40

Running Time Summary

 RMSD (root mean square deviation) of running time (seconds) to the best (fastest) running time on all datasets

Brute-force	Decremental (LAMP)	Incremental
6.994 × 10 ⁴	2.410×10^{4}	1.230×10^{2}

- Incremental search is the fastest
 - More than two orders of magnitude faster than brute-force
 - Much faster than decremental (LAMP) as the final minimum frequency is usually small (~20)

Final Minimum Frequency

Dataset	Maximum size of subgraph nodes					n		
	5	7	9	11	13	15	Limitless	
PTC(MR)	9	10	11	11	11	11	11	181
MUTAG	8	10	11	12	14			125
D&D	20	22	22	22	22	22	22	691
NCI1	17	20	22	25	27	29		2104
NCI167	7	8	9	10	11			9615
NCI220	10	11	13	14	15	16	18	290

Detected Significant Subgraphs

FWER Is still Too Low!

Related work: LAMP version 2

- Minato et al. proposed a faster version of LAMP in itemset mining
 - Minato, S., Uno, T., Tsuda, K., Terada, A. and Sese, J.: Fast Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Mining ECML PKDD 2014
- The idea is almost the same with our incremental search
 - Start from $\sigma = 1$, every time an item is added, the condition $|\mathcal{I}(\sigma)| \le \alpha/\psi(\sigma)$ is checked

• $\mathcal{I}(\sigma)$: the set of itemsets found so far with the frequency $\geq \sigma$

- As soon as $|\mathcal{I}(\sigma)| > \alpha/\psi(\sigma)$, the current σ is too large and we decrement it

Conclusion

- Significant subgraphs mining with multiple testing correction is achieved
 - The first work that considers multiple testing correction in graph mining
- Efficient and effective (less false negatives) using testability
- Future work
 - Increase the FWER with keeping $\leq \alpha$
 - Currently we ignore correlations between subgraphs

Papers about Testability

- Tarone, R.E.: A modified Bonferroni method for discrete data Biometrics (1990)
- Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.: Statistical significance of combinatorial regulations, Proc. Natl. Acad. Sci. USA (2013).
- Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.: Fast Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Mining ECML PKDD 2014
- Sugiyama, M., Llinares López, F., Kasenburg, N., Borgwardt, K.M.: Significant Subgraph Mining with Multiple Testing Correction, SIAM SDM 2015 (http://arxiv.org/abs/1407.0316)
 - Code: http://git.io/N126