February 16, 2015
Tokyo Workshop on Statistically Sound Data Mining

Multiple Testing Correction in Graph Mining

Mahito Sugiyama (Osaka University, JST PRESTO) Joint work with Felipe Llinares López ${ }^{1}$, Niklas Kasenburg ${ }^{2}$, Karsten Borgwardt ${ }^{1}$ ('ETH Zürich, ${ }^{2}$ Univ. Copenhagen)

Binary data
ID abcdefghij
$\begin{array}{ll}1 & 0011001110 \\ 2 & 1101101110 \\ 3 & 1011001110 \\ 4 & 1100100101 \\ 5 & 10101110\end{array}$

(Statistically) Significant patterns
(P value <0.05)
$\begin{array}{llllll}P \text { value: } & 0.06 & 0.01 & 0.02 & 0.07 & 0.02\end{array}$
The P value is crucial for scientific discovery!

Find Subgraphs

$3 / 40$

Find Subgraphs

Find Subgraphs

Active

5/40

Find Subgraphs

Hypothesis Test for Each Subgraph

Alternative hypothesis Null hypothesis is true is true

Declared significant

Declared non-significant

True Positive
False Positive
(Type I Error)

True Negative

False Negative
(Type II Error)

Null hypothesis:

The occurence of the subgraph is independent from the activity

Alternative hypothesis: The occurence of the subgraph is associated with the activity

Testing the Independence of Subgraph

- Given two sets of graphs \mathcal{G} and \mathcal{G}^{\prime}
$-|\mathcal{G}|=n,\left|\mathcal{G}^{\prime}\right|=n^{\prime}\left(n \leq n^{\prime}\right)$
- The P value of each subgraph $H \subseteq G$ with $G \in \mathcal{G} \cup \mathcal{G}^{\prime}$ is determined by the Fisher's exact test
$\left.\begin{array}{cccc}\hline & \text { Occ. } & \text { Non-occ. } & \text { Total } \\ \hline \mathcal{G} & x & n-x & n \\ \mathcal{G}^{\prime} & x^{\prime} & n^{\prime}-x^{\prime} & n^{\prime} \\ \text { Total } & x+x^{\prime} & (n-x) & +\left(n^{\prime}-x^{\prime}\right)\end{array}\right)$

Fisher's Exact Test

- The probability $q(x)$ of obtaining x and x^{\prime} is given by the hypergeometric distribution:

$$
q(x)=\binom{n}{x}\binom{n^{\prime}}{x^{\prime}} /\binom{n+n^{\prime}}{x+x^{\prime}}
$$

Multiple Testing

Counting the Frequency of Subgraphs

Active

Inactive

Counting the Frequency of Subgraphs

$12 / 40$

Counting the Frequency of Subgraphs

Frequency

$13 / 40$

Counting the Frequency of Subgraphs

Frequency

$$
f(\Omega)=6
$$

$14 / 40$

The Minimum P Value

- The minimum achievable P value for the frequency $f(H)$ of a subgraph H is

$$
P_{\min }=\binom{n}{f(H)} /\binom{n+n^{\prime}}{f(H)}
$$

Testability

- The minimum achievable P value for the frequency $f(H)$ of a subgraph H is

$$
P_{\min }=\binom{n}{f(H)} /\binom{n+n^{\prime}}{f(H)}
$$

- Tarone (1990) pointed out (and Terada et al. (2013) revisited): For a hypothesis H, if its minimum P value is smaller than the significance threshold, this is untestable and we can ignore it
- Untestable hypotheses (subgraphs) do not increase the FWER
- The Bonferroni factor reduces to the number of testable hypotheses

Finding the Optimal Correction Factor

- $m(k)$: \# of subgraphs whose minimum P values $<\alpha / k$
- k : the correction factor, a / k : the corrected significance level
- For each k, FWER is controlled as (Tarone 1990):

FWER $\leq m(k) \frac{a}{k}=\frac{m(k)}{k} a$

- Our task:
- Find the smallest k while controlling FWER $\leq a$
- Coincides with the "root" $k_{r t}$ of the function $m(k)-k$
- $m(k) \leq k$ for all $k \geq k_{\mathrm{rt}}$ and $m(k)>k$ for all $k<k_{\mathrm{rt}}$
- Enumerate testable subgraphs whose min. P values $<\alpha / k_{\mathrm{rt}}$

Testable Subgraphs

Frequency is large
Minimum P value

Testable Subgraphs

$k=10, m(10)=1 \quad$ (this k is the Bonferroni factor)
Frequency is large
Minimum P value

Testable Subgraphs

$$
k=9, \quad m(9)=4
$$

Frequency is large
Minimum P value

Testable Subgraphs

$$
k=8, \quad m(8)=6
$$

Frequency is large
Minimum P value

Testable Subgraphs

$$
k=7, \quad m(7)=8
$$

Frequency is large
Minimum P value

Testable Subgraphs

$$
k=8, \quad m(8)=6^{K} \text { The reduced Bonferroni factor }
$$

Frequency is large
Minimum P value

Subgraphs Are Testable Iff Frequent

- Our task:

Find k such that
(\# of subgraphs whose minimum P values $<\alpha / k$) $=k$

$$
\Downarrow
$$

Find σ such that
(\# of subgraphs whose frequency $\geq \sigma$) $=\alpha / \psi(\sigma)$
Testable subgraphs = Frequent subgraphs

Use Frequent Subgraph Mining

- Testable subgraphs can be enumerated by frequent subgraph mining algorithms
- Proposition:

The set of testable subgraphs $\tau(\mathcal{H})$ coincides with the set of frequent subgraphs with the threshold σ_{rt} s.t.
\# of subgraphs with minfreq $\sigma_{\mathrm{rt}}-1>\alpha / \psi\left(\sigma_{\mathrm{rt}}-1\right)$,
\# of subgraphs with minfreq $\sigma_{\mathrm{rt}} \leq \alpha / \psi\left(\sigma_{\mathrm{rt}}\right)$,
$-a / \psi(\sigma)$ shows the admissible number of subgraphs at σ

- $\psi(\sigma)=\binom{n}{\sigma} /\binom{n+n^{\prime}}{\sigma}$ (Minimum P value at σ)
- For $k_{\mathrm{rt}}=a / \psi\left(\sigma_{\mathrm{rt}}\right)$, if ψ is monotonically decreasing, $m\left(k_{\mathrm{rt}}\right)=$ $\left|\left\{H \in \mathcal{H} \mid \psi(f(H)) \leq \psi\left(\sigma_{\mathrm{rt}}\right)\right\}\right|=\left|\left\{H \in \mathcal{H} \mid f(H) \geq \sigma_{\mathrm{rt}}\right\}\right|$

How to Use Subgraph Mining

Brute-Force Search (Bonferroni)

27/40

Decremental Search (LAMP)

Incremental Search

\mapsto Terminate if \# of subgraphs detected so far exceeds $\alpha / \psi(\sigma)$

Incremental search

Datasets

Dataset	Size	\#positive	avg. $\|V\|$	avg. $\|E\|$	$\max \|V\|$	$\max \|E\|$
PTC (MR)	584	181	31.96	32.71	181	181
MUTAG	188	125	17.93	39.59	28	66
D\&D	1178	691	284.32	715.66	5748	14267
NCl1	4208	2104	60.12	62.72	462	468
NCl167	80581	9615	39.70	41.05	482	478
NCl220	900	290	46.87	48.52	239	255

Correction Factor

Number of Significant Subgraphs

Running Time (second)

Running Time Summary

- RMSD (root mean square deviation) of running time (seconds) to the best (fastest) running time on all datasets

Brute-force	Decremental (LAMP)	Incremental
6.994×10^{4}	2.410×10^{4}	1.230×10^{2}

- Incremental search is the fastest
- More than two orders of magnitude faster than brute-force
- Much faster than decremental (LAMP) as the final minimum frequency is usually small (~ 20)

Final Minimum Frequency

Dataset	Maximum size of subgraph nodes							
	5	7	9	11	13	15	Limitless	
PTC(MR)	9	10	11	11	11	11	11	181
MUTAG	8	10	11	12	14	-	-	125
D\&D	20	22	22	22	22	22	22	691
NCI1	17	20	22	25	27	29	-	2104
NCl167	7	8	9	10	11	-	-	9615
NCl220	10	11	13	14	15	16	18	290

Detected Significant Subgraphs

PTC (MR)
(carcinogenicity)

NCl 220
(anti-cancer activity)

FWER Is still Too Low!

Related work: LAMP version 2

- Minato et al. proposed a faster version of LAMP in itemset mining
- Minato, S., Uno, T., Tsuda, K., Terada, A. and Sese, J.: Fast Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Mining ECML PKDD 2014
- The idea is almost the same with our incremental search
- Start from $\sigma=1$, every time an item is added, the condition $|\mathcal{I}(\sigma)| \leq \alpha / \psi(\sigma)$ is checked - $\mathcal{I}(\sigma)$: the set of itemsets found so far with the frequency $\geq \sigma$
- As soon as $|\mathcal{I}(\sigma)|>a / \psi(\sigma)$, the current σ is too large and we decrement it

Conclusion

- Significant subgraphs mining with multiple testing correction is achieved
- The first work that considers multiple testing correction in graph mining
- Efficient and effective (less false negatives) using testability
- Future work
- Increase the FWER with keeping $\leq a$
- Currently we ignore correlations between subgraphs

Papers about Testability

- Tarone, R.E.:

A modified Bonferroni method for discrete data Biometrics (1990)

- Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.: Statistical significance of combinatorial regulations,
Proc. Natl. Acad. Sci. USA (2013).
- Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.:

Fast Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Mining ECML PKDD 2014

- Sugiyama, M., Llinares López, F., Kasenburg, N., Borgwardt, K.M.: Significant Subgraph Mining with Multiple Testing Correction, SIAM SDM 2015 (http: / /arxiv.org/abs / 1407.0316)
- Code: http://git.io/N126

